Do you want to publish a course? Click here

Optical control of coherent interactions between quantum dot electron spins

252   0   0.0 ( 0 )
 Added by Alex Greilich
 Publication date 2010
  fields Physics
and research's language is English
 Authors S. Spatzek




Ask ChatGPT about the research

Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.



rate research

Read More

Because of their long coherence times and potential for scalability, semiconductor quantum-dot spin qubits hold great promise for quantum information processing. However, maintaining high connectivity between quantum-dot spin qubits, which favor linear arrays with nearest neighbor coupling, presents a challenge for large-scale quantum computing. In this work, we present evidence for long-distance spin-chain-mediated superexchange coupling between electron spin qubits in semiconductor quantum dots. We weakly couple two electron spins to the ends of a two-site spin chain. Depending on the spin state of the chain, we observe oscillations between the distant end spins. We resolve the dynamics of both the end spins and the chain itself, and our measurements agree with simulations. Superexchange is a promising technique to create long-distance coupling between quantum-dot spin qubits.
The laws of thermodynamics allow work extraction from a single heat bath provided that the entropy decrease of the bath is compensated for by another part of the system. We propose a thermodynamic quantum engine that exploits this principle and consists of two electrons on a double quantum dot (QD). The engine is fueled by providing it with singlet spin states, where the electron spins on different QDs are maximally entangled, and its operation involves only changing the tunnel coupling between the QDs. Work can be extracted since the entropy of an entangled singlet is lower than that of a thermal (mixed) state, although they look identical when measuring on a single QD. We show that the engine is an optimal thermodynamic engine in the long-time limit. In addition, we include a microscopic description of the bath and analyze the engines finite-time performance using experimentally relevant parameters.
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of QD-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond time-scale of Overhauser fields of the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using full coherent control of an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of short radio-frequency (rf) pulses. These results open the way to a new class of experiments using rf techniques to achieve highly-correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.
We present an adiabatic approach to the design of entangling quantum operations with two electron spins localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically-excited localized states. Slowly-varying optical pulses minimize the pulse noise and the relaxation of the excited states. An analytic dressed state solution gives a clear physical picture of the entangling process, and a numerical solution is used to investigate the error dynamics. For two vertically-stacked quantum dots we show that, for a broad range of dot parameters, a two-spin state with concurrence $C>0.85$ can be obtained by four optical pulses with durations $sim 0.1 - 1$ ns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا