No Arabic abstract
We study the formation of Faraday waves in an elongated Bose-Einstein condensate in presence of a one-dimensional optical lattice, where phonons are parametrically excited by modulating the radial confinement of the condensate. For very shallow optical lattices, phonons with a well-defined wave vector propagate along the condensate, as in the absence of the lattice, and we observe the formation of a Faraday pattern. By increasing the potential depth, the local sound velocity decreases and when it equals the condensate local phase velocity, the condensate becomes dynamically unstable and the parametric excitation of Faraday waves is suppressed.
We investigate experimentally a Bose Einstein condensate placed in a 1D optical lattice whose phase or amplitude is modulated in a frequency range resonant with the first bands of the band structure. We study the combined effect of the strength of interactions and external confinement on the 1 and 2-phonon transitions. We identify lines immune or sensitive to atom-atom interactions. Experimental results are in good agreement with numerical simulations. Using the band mapping technique, we get a direct access to the populations that have undergone $n$-phonon transitions for each modulation frequency.
We report on the efficient design of quantum optimal control protocols to manipulate the motional states of an atomic Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our protocols operate on the momentum comb associated with the lattice. In contrast to previous works also dealing with control in discrete and large Hilbert spaces, our control schemes allow us to reach a wide variety of targets by varying a single parameter, the lattice position. With this technique, we experimentally demonstrate a precise, robust and versatile control: we optimize the transfer of the BEC to a single or multiple quantized momentum states with full control on the relative phase between the different momentum components. This also allows us to prepare the BEC in a given eigenstate of the lattice band structure, or superposition thereof.
We explore, both experimentally and theoretically, the response of an elongated Bose-Einstein condensate to modulated interactions. We identify two distinct regimes differing in modulation frequency and modulation strength. Longitudinal surface waves are generated either resonantly or parametrically for modulation frequencies near the radial trap frequency or twice the trap frequency, respectively. The dispersion of these waves, the latter being a Faraday wave, is well-reproduced by a mean-field theory that accounts for the 3D nature of the elongated condensate. In contrast, in the regime of lower modulation frequencies we find that no clear resonances occur, but with increased modulation strength, the condensate forms an irregular granulated distribution that is outside the scope of a mean-field approach. We find that the granulated condensate is characterized by large quantum fluctuations and correlations, which are well-described with single-shot simulations obtained from wavefunctions computed by a beyond mean-field theory at zero temperature, the multiconfigurational time-dependent Hartree for bosons method.
We show that the Kapitza stabilization can occur in the context of nonlinear quantum fields. Through this phenomenon, an amplitude-modulated lattice can stabilize a Bose-Einstein condensate with repulsive interactions and prevent the spreading for long times. We present a classical and quantum analysis in the framework of Gross-Pitaevskii equation, specifying the parameter region where stabilization occurs. Effects of nonlinearity lead to a significant increase of the stability domain compared with the classical case. Our proposal can be experimentally implemented with current cold atom settings.
The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrodinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.