Do you want to publish a course? Click here

Two-Stage Kondo Effect and Kondo Box Level Spectroscopy in a Carbon Nanotube

124   0   0.0 ( 0 )
 Added by Gleb Finkelstein
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The concept of the Kondo box describes a single spin, antiferromagnetically coupled to a quantum dot with a finite level spacing. Here, a Kondo box is formed in a carbon nanotube interacting with a localized electron. We investigate the spins of its first few eigenstates and compare them to a recent theory. In an open Kondo-box, strongly coupled to the leads, we observe a non-monotonic temperature dependence of the nanotube conductance, which results from a competition between the Kondo-box singlet and the conventional Kondo state that couples the nanotube to the leads.



rate research

Read More

We developed a theoretical framework which extends the method of textit{full counting statistics} (FCS) from conventional single channel Kondo screening schemes to multi-channel Kondo paradigm. The developed idea of FCS has been demonstrated considering an example of two-stage Kondo (2SK) model. We analyzed the charge transferred statistics in the strong-coupling regime of a 2SK model using non-equilibrium Keldysh formulation. A bounded value of Fano factor, $1leq Fleq 5/3$, confirmed the cross-over regimes of charge transfered statistics in 2SK effect, from Poissonian to super-Poissonian. An innovative way of measuring transport properties of 2SK effect, by the independent measurements of charge current and noise, has been proposed
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.
Understanding the interplay between many-body phenomena and non-equilibrium in systems with entangled spin and orbital degrees of freedom is a central objective in nano-electronics. We demonstrate that the combination of Coulomb interaction, spin-orbit coupling and valley mixing results in a particular selection of the inelastic virtual processes contributing to the Kondo resonance in carbon nanotubes at low temperatures. This effect is dictated by conjugation properties of the underlying carbon nanotube spectrum at zero and finite magnetic field. Our measurements on a clean carbon nanotube are complemented by calculations based on a new approach to the non-equilibrium Kondo problem which well reproduces the rich experimental observations in Kondo transport.
We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons with zero orbital angular momentum ($m=0$) coalesc at the two valley points ${bf{K}}$ and ${bf{K}}$ of the first Brillouin zone and 2) the energy spectrum of electrons with $m e 0$ has a gap whose size is proportional to $|m|$. Following adsorption of hydrogen atoms and application of an appropriately designed gate potential, electron energy levels in the CNT(QD) are tunable to have: 1) two-fold spin degeneracy; 2) two-fold isospin (valley) degeneracy; 3) three-fold orbital degeneracy $m=0,pm1$. As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature. Unlike the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields (WRT the tube axis) display anisotropy with a universal ratio $chi_{rm{imp}}^parallel / chi_{rm{imp}}^perp=eta$ that depends only on the electrons orbital and spin $g$ factors.
Kondo effect offers an important paradigm to understand strong correlated many-body physics. Although under intensive study, some of important properties of Kondo effect, in systems where both itinerant coupling and localized coupling play significant roles, are still elusive. Here we report evolution and universality of two stage Kondo effect, the simplest form where both couplings are important using single molecule transistor devices incorporating Manganese phthalocyanine molecules. Kondo temperature T* of two-stage Kondo effect evolves linearly against effective interaction of involved two spins. Observed Kondo resonance shows universal quadratic dependence with all adjustable parameters: temperature, magnetic field and biased voltages. The difference in nonequilibrium conductance of two stage Kondo effect to spin 1/2 Kondo effect is also identified. Messages learned in this study fill in directive experimental evidence of evolution of two-stage Kondo resonance near quantum phase transition point, and help in understanding sophisticated molecular electron spectroscopy in strong correlation regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا