We demonstrate the control of the hole concentration in Ga1-xMnxP over a wide range by introducing compensating vacancies. The resulting evolution of the Curie temperature from 51 K to 7.5 K is remarkably similar to that observed in Ga1-xMnxAs despite the dramatically different character of hole transport between the two material systems. The highly localized nature of holes in Ga1-xMnxP is reflected in the accompanying increase in resistivity by many orders of magnitude. Based on variable-temperature resistivity data we present a general picture for hole conduction in which variable-range hopping is the dominant transport mechanism in the presence of compensation.
Systematic investigations of the structural and magnetic properties of single crystal (Ga,Mn)N films grown by metal organic vapor phase epitaxy are presented. High resolution transmission electron microscopy, synchrotron x-ray diffraction, and extended x-ray absorption fine structure studies do not reveal any crystallographic phase separation and indicate that Mn occupies Ga-substitutional sites in the Mn concentration range up to 1%. The magnetic properties as a function of temperature, magnetic field and its orientation with respect to the c-axis of the wurtzite structure can be quantitatively described by the paramagnetic theory of an ensemble of non-interacting Mn$^{3+}$ ions in the relevant crystal field, a conclusion consistent with the x-ray absorption near edge structure analysis. A negligible contribution of Mn in the 2+ charge state points to a low concentration of residual donors in the studied films. Studies on modulation doped p-type (Ga,Mn)N/(Ga,Al)N:Mg heterostructures do not reproduce the high temperature robust ferromagnetism reported recently for this system.
Nanostructured La0.67Ca0.33MnO3 (NS-LCMO) was formed by pulsed-laser deposition on the surface of porous Al2O3. The resistance peak temperature (Tp) of the NS-LCMO increases with increasing average thickness of the films, while their Curie temperatures (Tc) remain unchanged. The coercive field of the samples increases with decreasing film thickness and its temperature dependence can be well described by Hc(T) = Hc(0)[1-(T/TB)1/2]. A large magnetoresistance and strong memory effect were observed for the NS-LCMO. The results are discussed in terms of the size effect, Coulomb blockade and magnetic tunneling effect. This work also demonstrates a new way to get nanostructured manganites.
By employing highly sensitive millikelvin SQUID magnetometry, the magnitude of the Curie temperature as a function of the Mn concentration x is determined for thoroughly characterized Ga1-xMnxN. The interpretation of the results in the frame of tight binding theory and of Monte Carlo simulations, allows us to assign the spin interaction to ferromagnetic superexchange and to benchmark the accuracy of state-of-the-art ab initio methods in predicting the magnetic characteristics of dilute magnetic insulators.
Nanocrystalline ribbons of inverse Heusler alloy Mn2Ni1.6Sn0.4 have been synthesised by melt spinning of the arc melted bulk precursor. The single phase ribbons crystallize into a cubic structure and exhibit very fine crystallite size of < 2 nm. Temperature dependent magnetization (M-T) measurements reveal that austenite (A)-martensite (M) phase transition begins at T~248 K and finishes at T~238 K during cooling cycle and these values increase to T~267 K and T~259 K while warming. In cooling cycle, the A-phase shows ferromagnetic (FM) ordering with a Curie temperature T~267 K, while both the FM-antiferromagnetic (AFM) and M-transitions occur at T~242 K. The M-phase undergoes FM transition at T~145 K. These transitions are also confirmed by temperature dependent resistivity measurements. The observed hysteretic behaviour of magnetization and resistivity in the temperature regime spanned by the A-M transition is a manifestation of the first order phase transition. Magnetization and susceptibility data also provide unambiguous evidence in favour of spin glass . The scaling of the glass freezing temperature (Tf) with frequency, extracted from the frequency dependent AC susceptibility measurements, confirms the existence of canonical spin glass at T<145 K. The occurrence of canonical spin glass has been explained in terms of the nanostructuring modified interactions between the FM correlations in the martensitic phase and the coexisting AFM.
Here, we report the growth and characterization of single crystals of NdxSb2-xTe3, by solid state reaction route via self-flux method. The phase and layered growth are confirmed through x-ray diffraction and Scanning electron microscopy respectively. A slight contraction in lattice parameters is seen after Nd doping. Also a minute shift in vibrational modes of recorded Raman spectra has been observed by doping of Nd in Sb2Te3. The magneto-resistance values under magnetic field of 5Tesla for Sb2Te3 are 75 percent at 2.5K and 60 percent at 20K, but only 40 percent at 5K for Nd0.1Sb1.9Te3. DC magnetic measurements exhibit expected diamagnetic and paramagnetic behaviors for pure and Nd doped crystals respectively. A cusp-like behavior is observed in magneto conductivity of both pure and Nd doped crystals at low magnetic fields below 1 Tesla which is analyzed using Hikami Larkin Nagaoka (HLN) model. For Sb2Te3 the fitted parameters alpha values are -1.02 and -0.58 and the phase coherence lengths are 50.8(6)nm & 34.9(8)nm at temperatures 2.5K and 20K respectively. For Nd0.1Sb1.9Te3, alpha is -0.29 and coherence length is 27.2(1) nm at 5K. The {alpha} values clearly show the presence of weak anti localization effect in both, pure and Nd doped samples. Also with Nd doping, the contribution of bulk states increases in addition to conducting surface states in overall conduction mechanism.