Do you want to publish a course? Click here

Excitonic Effects in Two-Dimensional Massless Dirac Fermions

134   0   0.0 ( 0 )
 Added by Herbert A. Fertig
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general 4-leg vertex has a power law behavior with the exponent going from real to complex as the coupling constant is increased. This change of behavior is manifested in the antisymmetric response, which displays power law behavior at small wavevectors reminiscent of a critical state, and a change in this power law from real to complex that is accompanied by poles in the response function for finite size systems, suggesting a phase transition for strong enough interactions. The density-density response is also calculated, for which no critical behavior is found. We demonstrate that exciton correlations enhance the cusp in the irreducible polarizability at $2k_F$, leading to a strong increase in the amplitude of Friedel oscillations around a charged impurity.



rate research

Read More

Two-dimensional Dirac fermions are subjected to two types of interactions, namely the long-range Coulomb interaction and the short-range on-site interaction. The former induces excitonic pairing if its strength $alpha$ is larger than some critical value $alpha_c$, whereas the latter drives an antiferromagnetic Mott transition when its strength $U$ exceeds a threshold $U_c$. Here, we study the impacts of the interplay of these two interactions on excitonic pairing with the Dyson-Schwinger equation approach. We find that the critical value $alpha_c$ is increased by weak short-range interaction. As $U$ increases to approach $U_c$, the quantum fluctuation of antiferromagnetic order parameter becomes important and interacts with the Dirac fermions via the Yukawa coupling. After treating the Coulomb interaction and Yukawa coupling interaction on an equal footing, we show that $alpha_c$ is substantially increased as $U rightarrow U_c$. Thus, the excitonic pairing is strongly suppressed near the antiferromagnetic quantum critical point. We obtain a global phase diagram on the $U$-$alpha$ plane, and illustrate that the excitonic insulating and antiferromagnetic phases are separated by an intermediate semimetal phase. These results provide a possible explanation of the discrepancy between recent theoretical progress on excitonic gap generation and existing experiments in suspended graphene.
354 - C. Kamal 2019
We predict from DFT based electronic structure calculations that a monolayer made up of Carbon and Arsenic atoms, with a chemical composition (CAs3) forms an energetically and dynamically stable system. The optimized geometry of the monolayer is slightly different from the buckled geometric configuration observed for silicene and germanene. The results of electronic structure calculations predict that it is a semi-metal. Interestingly, the electronic band structure of this material possesses a linear dispersion and a Dirac cone at the Fermi level around the high symmetric K point in the reciprocal lattice. Thus, at low energy excitation (up to 105 meV), the charge carriers in this system behave as massless Dirac-Fermions. Detailed analysis of partial density of state suggests that the 2pz orbital of C atoms plays vital role in determining the nature of the states, which has a linear dispersion and hence the Dirac cone, around the Fermi level. Thus, the electronic properties of CAs3 monolayer are similar to those of graphene and other group IV based monolayers. In addition, we have also investigated the influence of mechanical strain on the properties of CAs3 monolayer. The buckled configuration becomes the planar configuration for a tensile strain beyond 18%. Our results indicate that the monolayer possesses linear dispersion in the electronic band structure for a wide range of mechanical strain from -12 to 20%, though the position of Dirac point may not lie exactly at the Fermi level. The linear dispersion disappears for a compressive strain beyond -12% & it is due to the drastic changes in the geometrical environment around C atom. Finally, we wish to point out that CAs3 monolayer belongs to the class of Dirac materials where the behaviour of particles, at low energy excitations, are characterized by the Dirac-like Hamiltonian rather than the Schrodinger Hamiltonian.
213 - M. Horio , C. E. Matt , K. Kramer 2018
Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but appear also as low-energy quasi-particle excitations in electronic band structures. In condensed matter systems, their massless nature can be protected by crystal symmetries. Classification of such symmetry-protected relativistic band degeneracies has been fruitful, although many of the predicted quasi-particles still await their experimental discovery. Here we reveal, using angle-resolved photoemission spectroscopy, the existence of two-dimensional type-II Dirac fermions in the high-temperature superconductor La$_{1.77}$Sr$_{0.23}$CuO$_4$. The Dirac point, constituting the crossing of $d_{x^2-y^2}$ and $d_{z^2}$ bands, is found approximately one electronvolt below the Fermi level ($E_mathrm{F}$) and is protected by mirror symmetry. If spin-orbit coupling is considered, the Dirac point degeneracy is lifted and the bands acquire a topologically non-trivial character. In certain nickelate systems, band structure calculations suggest that the same type-II Dirac fermions can be realised near $E_mathrm{F}$.
Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially-separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of thick and thin spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity in the case in which one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical Fermi-liquid quadratic-in-temperature behavior of the transresistivity.
At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. While such states are possibly realized in two-dimensional organic compounds, they have remained elusive in experimentally relevant microscopic two-dimensional models. Here, we show by means of large-scale quantum Monte Carlo simulations of correlated fermions on the honeycomb lattice, a structure realized in graphene, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Therefore, the possibility of unconventional superconductivity through doping arises. We foresee its realization with ultra-cold atoms or with honeycomb lattices made with group IV elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا