No Arabic abstract
The ATLAS trigger has been used very successfully to collect collision data during 2009 and 2010 LHC running at centre of mass energies of 900 GeV, 2.36 TeV, and 7 TeV. This paper presents the ongoing work to commission the ATLAS trigger with proton collisions, including an overview of the performance of the trigger based on extensive online running. We describe how the trigger has evolved with increasing LHC luminosity and give a brief overview of plans for forthcoming LHC running.
Since the start-up of the LHC end of 2009, the trigger commissioning is in full swing. The ATLAS trigger system is divided into three levels: the hardware-based first level trigger, and the software-based second level trigger and Event Filter, collectively referred to as the High Level Trigger (HLT). Initially, events have been selected online based on the Level-1 selections with the HLT algorithms run but not rejecting any events. This has been an important step in the commissioning of these triggers to ensure their correct functioning and subsequently to enable the HLT selections. Due to increasing LHC luminosity and the large QCD cross section, this has been a vital step to select leptons from J/$Psi$, bottom, charm, W and Z decays. This presentation gives an overview of the trigger performance of the electron and photon selection. Comparisons of the online selection variables with the offline reconstruction are shown as well as comparisons of data with MC simulations on which the current selection tuning is performed.
The ATLAS detector at CERNs Large Hadron Collider will be exposed to proton-proton collisions from beams crossing at 40 MHz that have to be reduced to the few 100 Hz allowed by the storage systems. A three-level trigger system has been designed to achieve this goal. We describe the configuration system under construction for the ATLAS trigger chain. It provides the trigger system with all the parameters required for decision taking and to record its history. The same system configures the event reconstruction, Monte Carlo simulation and data analysis, and provides tools for accessing and manipulating the configuration data in all contexts.
To cope with the enhanced luminosity at the Large Hadron Collider (LHC) in 2021, the ATLAS collaboration is planning a major detector upgrade. As a part of this, the Level 1 trigger based on calorimeter data will be upgraded to exploit the fine granularity readout using a new system of Feature EXtractors (FEX), which each reconstruct different physics objects for the trigger selection. The jet FEX (jFEX) system is conceived to provide jet identification (including large area jets) and measurements of global variables within a latency budget of less then 400ns. It consists of 6 modules. A single jFEX module is an ATCA board with 4 large FPGAs of the Xilinx Ultrascale+ family, that can digest a total input data rate of ~3.6 Tb/s using up to 120 Multi Gigabit Transceiver (MGT), 24 electrical optical devices, board control and power on the mezzanines to allow flexibility in upgrading controls functions and components without affecting the main board. The 24-layers stack-up was carefully designed to preserve the signal integrity in a very densely populated high speed signal board selecting MEGTRON6 as the most suitable PCB material. This contribution reports on the design challenges and the test results of the jFEX prototypes. In particular the fully assembled final prototype has been tested up to 12.8 Gb/s in house and in integrated tests at CERN. The full jFEX system will be produced by the end of 2018 to allow for installation and commissioning to be completed before LHC restarts in March 2021.
This article documents the characteristics of the high voltage (HV) system of the hadronic calorimeter TileCal of the ATLAS experiment. Such a system is suitable to supply reliable power distribution into particles physics detectors using a large number of PhotoMultiplier Tubes (PMTs). Measurements performed during the 2015 and 2016 data taking periods of the ATLAS detector show that its performance, in terms of stability and noise, fits the specifications. In particular, almost all the PMTs show a voltage instability smaller than 0.5 V corresponding to a gain stability better than 0.5%. A small amount of channels was found not working correctly. To diagnose the origin of such defects, the results of the HV measurements were compared to those obtained using a Laser system. The analysis shows that less than 0.2% of the about 10 thousand HV channels were malfunctioning.
The MEG experiment at the Paul Scherrer Institut (PSI) represents the state of the art in the search for the charged Lepton Flavour Violating (cLFV) $mu^+ rightarrow e^+ gamma$ decay. With the phase 1, MEG set the new world best upper limit on the $mbox{BR}(mu^+ rightarrow e^+ gamma) < 4.2 times 10^{-13}$ (90% C.L.). With the phase 2, MEG II, the experiment aims at reaching a sensitivity enhancement of about one order of magnitude compared to the previous MEG result. The new Cylindrical Drift CHamber (CDCH) is a key detector for MEG II. CDCH is a low-mass single volume detector with high granularity: 9 layers of 192 drift cells, few mm wide, defined by $sim 12000$ wires in a stereo configuration for longitudinal hit localization. The filling gas mixture is Helium:Isobutane (90:10). The total radiation length is $1.5 times 10^{-3}$ $mbox{X}_0$, thus minimizing the Multiple Coulomb Scattering (MCS) contribution and allowing for a single-hit resolution $< 120$ $mu$m and an angular and momentum resolutions of 6 mrad and 90 keV/c respectively. This article presents the CDCH commissioning activities at PSI after the wiring phase at INFN Lecce and the assembly phase at INFN Pisa. The endcaps preparation, HV tests and conditioning of the chamber are described, aiming at reaching the final stable working point. The integration into the MEG II experimental apparatus is described, in view of the first data taking with cosmic rays and $mu^+$ beam during the 2018 and 2019 engineering runs. The first gas gain results are also shown. A full engineering run with all the upgraded detectors and the complete DAQ electronics is expected to start in 2020, followed by three years of physics data taking.