No Arabic abstract
Thermoelectric generation is an essential function of future energy-saving technologies. However, this generation has been an exclusive feature of electric conductors, a situation which inflicts a heavy toll on its application; a conduction electron often becomes a nuisance in thermal design of devices. Here we report electric-voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, a magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached Pt films transform this spin voltage into electric voltage by the inverse spin Hall effect. The experimental results require us to introduce thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.
We report the observation of longitudinal spin Seebeck effects (LSSE) in an all-oxide bilayer system comprising an IrO$_2$ film and an Y$_3$Fe$_5$O$_{12}$ film. Spin currents generated by a temperature gradient across the IrO$_2$/Y$_3$Fe$_5$O$_{12}$ interface were detected as electric voltage via the inverse spin Hall effect in the conductive IrO$_2$ layer. This electric voltage is proportional to the magnitude of the temperature gradient and its magnetic field dependence is well consistent with the characteristic of the LSSE. This demonstration may lead to the realization of low-cost, stable, and transparent spin-current-driven thermoelectric devices.
How magnetism affects the Seebeck effect is an important issue widely concerned in the thermoelectric community yet remaining elusive. Based on a thermodynamic analysis of spin degrees of freedom on varied $d$-electron based ferro- and anti-ferromagnets, we demonstrate that in itinerant or partially itinerant magnetic compounds there exists a generic spin contribution to the Seebeck effect over an extended temperature range from slightly below to well above the magnetic transition temperature. This contribution is interpreted as resulting from transport spin entropy of (partially) delocalized conducting $d$ electrons with strong thermal spin fluctuations, even semiquantitatively in a single-band case, in addition to the conventional diffusion part arising from their kinetic degrees of freedom. As a highly generic effect, the spin-dependent Seebeck effect might pave a feasible way to efficient magnetic thermoelectrics.
Thermoelectric effects have been applied to power generators and temperature sensors that convert waste heat into electricity. The effects, however, have been limited to electrons to occur, and inevitably disappear at low temperatures due to electronic entropy quenching. Here, we report thermoelectric generation caused by nuclear spins in a solid: nuclear-spin Seebeck effect. The sample is a magnetically ordered material MnCO$_{3}$ having a large nuclear spin ($I = 5/2$) of $^{55}$Mn nuclei and strong hyperfine coupling, with a Pt contact. In the system, we observe low-temperature thermoelectric signals down to 100 mK due to nuclear-spin excitation. Our theoretical calculation in which interfacial Korringa process is taken into consideration quantitatively reproduces the results. The nuclear thermoelectric effect demonstrated here offers a way for exploring thermoelectric science and technologies at ultralow temperatures.
We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, although we do not observe a change of sign of the voltage at the Pt strip when it is moved from hot to cold side, which is believed to be the most striking feature of the transverse spin Seebeck effect. Therefore, we relate the observed voltages to the longitudinal spin Seebeck effect generated by a parasitic out-of-plane temperature gradient, which can be simulated by contact tips of different material and heat conductivities and by tip heating. This work gives new insights into the interpretation of transverse spin Seebeck effect experiments, which are still under discussion.
Antiferromagnets are beneficial for future spintronic applications due to their zero magnetic moment and ultrafast dynamics. But gaining direct access to their antiferromagnetic order and identifying the properties of individual magnetic sublattices, especially in thin films and small-scale devices, remains a formidable challenge. So far, the existing read-out techniques such as anisotropic magnetoresistance, tunneling anisotropic magnetoresistance, and spin-Hall magnetoresistance, are even functions of sublattice magnetization and thus allow us to detect different orientations of the Neel order for antiferromagnets with multiple easy axes. In contrast direct electrical detection of oppositely oriented spin states along the same easy axes (e.g., in uniaxial antiferromagnets) requires sensitivity to the direction of individual sublattices and thus is more difficult. In this study, using spin Seebeck effect, we report the electrical detection of the two sublattices in a uniaxial antiferromagnet Cr2O3. We find the rotational symmetry and hysteresis behavior of the spin Seebeck signals measured at the top and bottom surface reflect the dierction of the surface sublattice moments, but not the Neel order or the net moment in the bulk. Our results demonstrate the important role of interface spin sublattices in generating the spin Seebeck voltages, which provide a way to access each sublattice independently, enables us to track the full rotation of the magnetic sublattice, and distinguish different and antiparallel antiferromagnetic states in uniaxial antiferromagnets.