No Arabic abstract
Antiferromagnets are beneficial for future spintronic applications due to their zero magnetic moment and ultrafast dynamics. But gaining direct access to their antiferromagnetic order and identifying the properties of individual magnetic sublattices, especially in thin films and small-scale devices, remains a formidable challenge. So far, the existing read-out techniques such as anisotropic magnetoresistance, tunneling anisotropic magnetoresistance, and spin-Hall magnetoresistance, are even functions of sublattice magnetization and thus allow us to detect different orientations of the Neel order for antiferromagnets with multiple easy axes. In contrast direct electrical detection of oppositely oriented spin states along the same easy axes (e.g., in uniaxial antiferromagnets) requires sensitivity to the direction of individual sublattices and thus is more difficult. In this study, using spin Seebeck effect, we report the electrical detection of the two sublattices in a uniaxial antiferromagnet Cr2O3. We find the rotational symmetry and hysteresis behavior of the spin Seebeck signals measured at the top and bottom surface reflect the dierction of the surface sublattice moments, but not the Neel order or the net moment in the bulk. Our results demonstrate the important role of interface spin sublattices in generating the spin Seebeck voltages, which provide a way to access each sublattice independently, enables us to track the full rotation of the magnetic sublattice, and distinguish different and antiparallel antiferromagnetic states in uniaxial antiferromagnets.
Low power spintronic devices based on the propagation of pure magnonic spin currents in antiferromagnetic insulator materials offer several distinct advantages over ferromagnetic components including higher frequency magnons and a stability against disturbing external magnetic fields. In this work, we make use of the insulating antiferromagnetic phase of iron oxide, the mineral hematite $alpha$-Fe$_2$O$_3$ to investigate the long distance transport of thermally generated magnonic spin currents. We report on the excitation of magnons generated by the spin Seebeck effect, transported both parallel and perpendicular to the antiferromagnetic easy-axis under an applied magnetic field. Making use of an atomistic hematite toy model, we calculate the transport characteristics from the deviation of the antiferromagnetic ordering from equilibrium under an applied field. We resolve the role of the magnetic order parameters in the transport, and experimentally we find significant thermal spin transport without the need for a net magnetization.
Recently, Seebeck coefficients of ferromagnetic conductors are found to be spin-dependent. However straightforward method of accurately determining its spin polarization is still to be developed. Here, we have derived a linear dependence of anomalous Nernst coefficient on anomalous Hall angle with scaling factor related to spin polarization of Seebeck coefficient, which has been experimentally verified in [Co/Pt]n superlattices. Based on the dependence, we have also evaluated spin polarization of Seebeck coefficient of some ferromagnetic conductors. Besides, we have also found a new mechanism to generate pure spin current from temperature gradient in ferromagnetic/nonmagnetic hybrid system, which could improve efficiency from thermal energy to spin current.
Sharp structures in magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y$_{3}$Fe$_{5}$O$_{12}$ (YIG) at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes the magnetoelastic coupling (MEC). The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
Here we report on measurements of the spin-Seebeck effect of GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.
How magnetism affects the Seebeck effect is an important issue widely concerned in the thermoelectric community yet remaining elusive. Based on a thermodynamic analysis of spin degrees of freedom on varied $d$-electron based ferro- and anti-ferromagnets, we demonstrate that in itinerant or partially itinerant magnetic compounds there exists a generic spin contribution to the Seebeck effect over an extended temperature range from slightly below to well above the magnetic transition temperature. This contribution is interpreted as resulting from transport spin entropy of (partially) delocalized conducting $d$ electrons with strong thermal spin fluctuations, even semiquantitatively in a single-band case, in addition to the conventional diffusion part arising from their kinetic degrees of freedom. As a highly generic effect, the spin-dependent Seebeck effect might pave a feasible way to efficient magnetic thermoelectrics.