No Arabic abstract
In a recent letter, it has been predicted within first principle studies that Mn-doped ZrO2 compounds could be good candidate for spintronics application because expected to exhibit ferromagnetism far beyond room temperature. Our purpose is to address this issue experimentally for Mn-doped tetragonal zirconia. We have prepared polycrystalline samples of Y0.15(Zr0.85-yMny)O2 (y=0, 0.05, 0.10, 0.15 & 0.20) by using standard solid state method at equilibrium. The obtained samples were carefully characterized by using x-ray diffraction, scanning electron microscopy, elemental color mapping, X-ray photoemission spectroscopy and magnetization measurements. From the detailed structural analyses, we have observed that the 5% Mn doped compound crystallized into two symmetries (dominating tetragonal & monoclinic), whereas higher Mn doped compounds are found to be in the tetragonal symmetry only. The spectral splitting of the Mn 3s core-level x-ray photoelectron spectra confirms that Mn ions are in the Mn3+ oxidation state and indicate a local magnetic moment of about 4.5 {mu}B/Mn. Magnetic measurements showed that compounds up to 10% of Mn doping are paramagnetic with antiferromagnetic interactions. However, higher Mn doped compound exhibits local ferrimagnetic ordering. Thus, no ferromagnetism has been observed for all Mn-doped tetragonal ZrO2 samples.
We study the electronic structure and magnetism of 25% Mn substituted cubic Zirconia (ZrO2) with several homogeneous and heterogeneous doping profiles using density-functional theory calculations. We find that all doping profiles show half-metallic ferromagnetism (HMF), and delta-doping is most energy favorable while homogeneous doping has largest ferromagnetic stabilization energy. Using crystal field theory, we discuss the formation scheme of HMF. Finally, we speculate the potential spintronics applications for Mn doped ZrO2, especially as spin direction controllment.
Using the first-principles density-functional theory plan-wave pseudopotential method, we investigate the structure and magnetism in 25% Mn substitutive and interstitial doped monoclinic, tetragonal and cubic ZrO2 systematically. Our studies show that the introduction of Mn impurities into ZrO2 not only stabilizes the high temperature phase, but also endows ZrO2 with magnetism. Based on the simple crystal field theory (CFT), we discuss the origination of magnetism in Mn doped ZrO2. Moreover, we discuss the effect of electron donor on magnetic semiconductors, and the possibility as electronic structure modulator.
We present results of a combined density functional and many-body calculations for the electronic and magnetic properties of the defect-free digital ferromagnetic heterostructures obtained by doping GaAs with Cr and Mn. While local density approximation/(+U) predicts half-metallicity in these defect-free delta-doped heterostructures, we demonstrate that local many-body correlations captured by Dynamical Mean Field Theory induce within the minority spin channel non-quasiparticle states just above $E_F$. As a consequence of the existence of these many-body states the half-metallic gap is closed and the carriers spin polarization is significantly reduced. Below the Fermi level the minority spin highest valence states are found to localize more on the GaAs layers being independent of the type of electronic correlations considered. Thus, our results confirm the confinement of carriers in these delta-doped heterostructures, having a spin-polarization that follow a different temperature dependence than magnetization. We suggest that polarized hot-electron photoluminescence experiments might bring evidence for the existence of many-body states within the minority spin channel and their finite temperature behavior.
The magnetic state of Nitrogen-doped MgO, with N substituting O at concentrations between 1% and the concentrated limit, is calculated with density-functional methods. The N atoms are found to be magnetic with a moment of 1 Bohr magneton per Nitrogen atom and to interact ferromagnetically via the double exchange mechanism. The long-range magnetic order is established above a finite concentration of about 1.5% when the percolation threshold is reached. The Curie temperature increases linearly with the concentration, and is found to be about 30 K for 10% concentration. Besides the substitution of single Nitrogen atoms, also interstitial Nitrogen atoms, clusters of Nitrogen atoms and their structural relaxation on the magnetism are discussed. Possible scenarios of engineering a higher Curie temperature are analyzed, with the conclusion that an increase of the Curie temperature is difficult to achieve, requiring a particular attention to the choice of chemistry.
The magnetic properties of dilute magnetic semiconductors (DMS) are calculated from first-principles by mapping the ab initio results on a classical Heisenberg model. It is found that the range of the exchange interaction in (Ga, Mn)N is very short ranged due to the exponential decay of the impurity wave function in the gap. Curie temperatures (Tc) of DMS are calculated by using the Monte Carlo method. It is found that the Tc values of (Ga, Mn)N are very low since, due to the short ranged interaction, percolation of the ferromagnetic coupling is difficult to achieve for small concentrations.