No Arabic abstract
Recent studies showed that hardness, a complex property, can be calculated using very simple approaches or even analytical formulae. These form the basis for evaluating controversial experimental results (as we illustrate for TiO2-cotunnite) and enable a systematic search for novel hard materials, for instance, using global optimization algorithms (as we show on the example of SiO2 polymorphs).
Understanding temperature-dependent hardness of covalent materials is not only of fundamental scientific interest, but also of crucial importance for technical applications. In this work, a temperature-dependent hardness formula for diamond-structured covalent materials is constructed on the basis of the dislocation theory. Our results show that, at low temperature, the Vickers hardness is mainly controlled by Poissons ratio and shear modulus with the latter playing a dominant role. With increasing temperature, the plastic deformation mechanism undergoes a transition from shuffle-set dislocation control to glide-set dislocation control, leading to a steeper drop of hardness at high temperature. In addition, an intrinsic parameter, a3G, is revealed for diamond-structured covalent materials, which measures the resistance to soften at high temperature. Our hardness model shows remarkable agreement with experimental data. Current work not only sheds lights on the physical origin of hardness, but also provides a direct principle for superhard materials design.
A recent experimental study reported the successful synthesis of an orthorhombic FeB4 with a high hardness of 62 GPa, which has reignited extensive interests on whether transition metal borides (TRBs) compounds will become superhard materials. However, it is contradicted with some theoretical studies suggesting transition metal boron compounds are unlikely to become superhard materials. Here, we examined structural and electronic properties of FeB4 using density functional theory. The electronic calculations show the good metallicity and covalent FeB bonding. Meanwhile, we extensively investigated stress strain relations of FeB4 under various tensile and shear loading directions. The calculated weakest tensile and shear stresses are 40 GPa and 25 GPa, respectively. Further simulations (e.g. electron localized function and bond length along the weakest loading direction) on FeB4 show the weak Fe-B bonding is responsible for this low hardness. Moreover, these results are consistent with the value of Vickers hardness (11.7 to 32.3 GPa) by employing different empirical hardness models and below the superhardness threshold of 40 GPa. Our current results suggest FeB4 is a hard material and unlikely to become superhard.
In the present work we have proposed the method that allows one to easily estimate hardness and bulk modulus of known or hypothetical solid phases from the data on Gibbs energy of atomization of the elements and corresponding covalent radii. It has been shown that hardness and bulk moduli of compounds strongly correlate with their thermodynamic and structural properties. The proposed method may be used for a large number of compounds with various types of chemical bonding and structures; moreover, the temperature dependence of hardness may be calculated, that has been performed for diamond and cubic boron nitride. The correctness of this approach has been shown for the recently synthesized superhard diamond-like BC5. It has been predicted that the hypothetical forms of B2O3, diamond-like boron, BCx and COx, which could be synthesized at high pressures and temperatures, should have extreme hardness.
Single-phase high-entropy monoborides (HEMBs) of the CrB prototype structure have been synthesized for the first time. Reactive spark plasma sintering of ball milled mixtures of elemental precursor powders produced bulk (V0.2Cr0.2Nb0.2Mo0.2Ta0.2)B, (V0.2Cr0.2Nb0.2Mo0.2W0.2)B, and (V0.2Cr0.2Nb0.2Ta0.2W0.2)B HEMB specimens of ~98.3-99.5% relative densities. Vickers hardness was measured to be ~22-26 GPa at an indentation load of 9.8 N and ~32-37 GPa at 0.98 N. In particular, the load-dependent hardness of (V0.2Cr0.2Nb0.2Ta0.2W0.2)B is higher than those of ternary (Ta0.5W0.5)B (already considered as superhard) and hardest reported high-entropy metal diborides, and on a par with the classical superhard boride WB4.
The field of Materials Science is concerned with, e.g., properties and performance of materials. An important class of materials are crystalline materials that usually contain ``dislocations -- a line-like defect type. Dislocation decisively determine many important materials properties. Over the past decades, significant effort was put into understanding dislocation behavior across different length scales both with experimental characterization techniques as well as with simulations. However, for describing such dislocation structures there is still a lack of a common standard to represent and to connect dislocation domain knowledge across different but related communities. An ontology offers a common foundation to enable knowledge representation and data interoperability, which are important components to establish a ``digital twin. This paper outlines the first steps towards the design of an ontology in the dislocation domain and shows a connection with the already existing ontologies in the materials science and engineering domain.