No Arabic abstract
We study Hubbard models for ultracold bosonic or fermionic atoms loaded into an optical lattice. The atoms carry a high spin $F>1/2$, and interact on site via strong repulsive Van der Waals forces. Making convenient rearrangements of the interaction terms, and exploiting their symmetry properties, we derive low energy effective models with nearest-neighbor interactions, and their properties. We apply our method to $F=3/2$, and 5/2 fermions on two-dimensional square lattice at quarter, and 1/6 fillings, respectively, and investigate mean-field equations for repulsive couplings. We find for $F=3/2$ fermions that the plaquette state appearing in the highly symmetric SU(4) case does not require fine tuning, and is stable in an extended region of the phase diagram. This phase competes with an SU(2) flux state, that is always suppressed for repulsive interactions in absence of external magnetic field. The SU(2) flux state has, however, lower energy than the plaquette phase, and stabilizes in the presence of weak applied magnetic field. For $F=5/2$ fermions a similar SU(2) plaquette phase is found to be the ground state without external magnetic field.
We show how a fermionic quantum gas in an optical lattice and coupled to the field of an optical cavity can self-organize into a state in which the spontaneously emerging cavity field amplitude induces an artificial magnetic field. The fermions form either a chiral insulator or a chiral liquid carrying edge currents. The feedback mechanism via the cavity field enables robust and fast switching of the edge currents and the cavity output can be employed for non-destructive measurements of the atomic dynamics.
We consider the non-equilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited band of an optical lattice. A specific lattice depth and filling configuration is designed to allow the $p_x$ and $p_y$ excited orbital degrees of freedom to act as a pseudo-spin. Starting from the full Hamiltonian for p-wave interactions in a periodic potential, we derive an extended Hubbard-type model that describes the anisotropic lattice dynamics of the excited orbitals at low energy. We then show how dispersion engineering can provide a viable route to realizing collective behavior driven by p-wave interactions. In particular, Bragg dressing and lattice depth can reduce single-particle dispersion rates, such that a collective many-body gap is opened with only moderate Feshbach enhancement of p-wave interactions. Physical insight into the emergent gap-protected collective dynamics is gained by projecting the Hamiltonian into the Dicke manifold, yielding a one-axis twisting model for the orbital pseudo-spin that can be probed using conventional Ramsey-style interferometry. Experimentally realistic protocols to prepare and measure the many-body dynamics are discussed, including the effects of band relaxation, particle loss, spin-orbit coupling, and doping.
The Zitterbewegung effect in spin-orbit coupled spin-1 cold atoms is investigated in the presence of the Zeeman field and a harmonic trap. It is shown that the Zeeman field and the harmonic trap have significant effect on the Zitterbewegung oscillatory behaviors. The external Zeeman field could suppress or enhance the Zitterbewegung amplitude and change the frequencies of oscillation. A much slowly damping Zitterbewegung oscillation can be achieved by adjusting both the linear and quadratic Zeeman field. Multi-frequency Zitterbewegung oscillation can be induced by the applied Zeeman field. In the presence of the harmonic trap, the subpackets corresponding to different eigenenergies would always keep coherent, resulting in the persistent Zitterbewegung oscillations. The Zitterbewegung oscillation would display very complicated and irregular oscillation characteristics due to the coexistence of different frequencies of the Zitterbewegung oscillation. Numerical results show that, the Zitterbewegung effect is robust even in the presence of interaction between atoms.
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.