No Arabic abstract
We investigate theoretically the adhesion and electronic properties of graphene on a muscovite mica surface using the density functional theory (DFT) with van der Waals (vdW) interactions taken into account (the vdW-DF approach). We found that irregularities in the local structure of cleaved mica surface provide different mechanisms for the mica-graphene binding. By assuming electroneutrality for both surfaces, the binding is mainly of vdW nature, barely exceeding thermal energy per carbon atom at room temperature. In contrast, if potassium atoms are non uniformly distributed on mica, the different regions of the surface give rise to $n$- or $p$-type doping of graphene. In turn, an additional interaction arises between the surfaces, significantly increasing the adhesion. For each case the electronic states of graphene remain unaltered by the adhesion. It is expected, however, that the Fermi level of graphene supported on realistic mica could be shifted relative to the Dirac point due to asymmetry in the charge doping. Obtained variations of the distance between graphene and mica for different regions of the surface are found to be consistent with recent atomic force microscopy experiments. A relative flatness of mica and the absence of interlayer covalent bonding in the mica-graphene system make this pair a promising candidate for practical use.
We demonstrate molecular beam growth of graphene on biotite mica substrates at temperatures below 1000{deg}C. As indicated by optical and atomic force microscopy, evaporation of carbon from a high purity solid-state source onto biotite surface results in the formation of single-, bi-, and multilayer graphene with size in the micrometer regime. Graphene grown directly on mica surface is of very high crystalline quality with the defect density below the threshold detectable by Raman spectroscopy. The interaction between graphene and the mica substrate is studied by comparison of the Raman spectroscopy and atomic force microscopy data with the corresponding results obtained for graphene flakes mechanically exfoliated onto biotite substrates. Experimental insights are combined with density functional theory calculations to propose a model for the initial stage of the van der Waals growth of graphene on mica surfaces. This work provides important hints on how the direct growth of high quality graphene on insulators can be realized in general without exceeding the thermal budget limitations of Si technologies.
As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Youngs modulus and strength are both intrinsically high, but the mechanical behavior of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 pm 0.02 J/m2 for monolayer graphene and 0.31 pm 0.03 J/m2 for samples containing 2-5 graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid/liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.
We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for different crystallographic stacking configurations and show that the interlayer bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to lead to stacking disorder and moire structures. Band structure calculations reveal substrate induced mass terms in graphene which change their sign with the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low energy electronic states in the moire structures are discussed. We find that the absolute band gaps in the moire structures are at least an order of magnitude smaller than the maximum local values of the mass term. Our results are in agreement with recent STM experiments.
Electromagnetic fields bound tightly to charge carriers in a two-dimensional sheet, namely surface plasmons, are shielded by metallic plates that are a part of a device. It is shown that for epitaxial graphenes, the propagation velocity of surface plasmons is suppressed significantly through a partial screening of the electron charge by the interface states. On the basis of analytical calculations of the electron lifetime determined by the screened Coulomb interaction, we show that the screening effect gives results in agreement with those of a recent experiment.
We perform ab initio calculations that indicate that the relative stability of antiphase boundaries (APB) with armchair and zigzag chiralities in monolayer boron nitride (BN) is determined by the chemical potentials of the boron and nitrogen species in the synthesis process. In an N-rich environment, a zigzag APB with N-rich core is the most stable structure, while under B-rich or intrinsic growth conditions, an armchair APB with stoichiometric core is the most stable. This stability transition is shown to arise from a competition between homopolar-bond (B-B and N-N) and elastic energy costs in the core of the APBs. Moreover, in the presence of a carbon source we find that a carbon-doped zigzag APB becomes the most stable boundary near the N-rich limit. The electronic structure of the two types of APBs in BN is shown to be particularly distinct, with the zigzag APB depicting defect-like deep electronic bands in the band gap, while the armchair APB shows bulk-like shallow electronic bands.