Do you want to publish a course? Click here

Exploring the magnetic topologies of cool stars

98   0   0.0 ( 0 )
 Added by Julien Morin
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale component of the magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution. The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations bring novel constraints on magnetic field generation by dynamo effect in cool stars. In particular, the study of solar twins brings new insight on the impact of rotation on the solar dynamo, whereas the detection of strong and stable dipolar magnetic fields on fully convective stars questions the precise role of the tachocline in this process.



rate research

Read More

The study of magnetic fields of cool chemically peculiar stars with effective temperatures less than 10 000 K is very important to understand the nature of their magnetism. We present new results of a long-term spectroscopic monitoring of the well-known magnetic star HD 178892. The analysis of spectra taken with the Russian 6-m telescope has revealed a periodic variation of the surface magnetic field from 17 to 23 kG. A revised rotational period of HD 178892 was extracted from the mean longitudinal field: 8.2549 days. We have continued the study of the components of the magnetic binary BD +40^{circ}175 started by V. Elkin at SAO RAS. Our measurements of magnetically splitted lines in the spectra of each component show the presence of strong magnetic fields in both components. The surface field in the case of the component A was about 14 kG at three different epochs. The component B possesses a slightly weaker field: B_{s} varies from 9 to 11 kG. A preliminary analysis of the chemical abundances allows us to make an assumption about the roAp nature of both components of BD +40^{circ}175.
92 - B. Stelzer 2016
This article provides a review of X-ray variability from late-type stars with particular focus on the achievements of XMM-Newton and its potential for future studies in this field.
101 - G. Mathys , S. Hubrig , E. Mason 2011
Hot cluster Horizontal Branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowly rotating. In particular, the slow rotation of the hot HB stars (T_eff > 11000K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with T_eff < 30000K, whose temperatures overlap with those of the hot HB stars. We conclude that large-scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it.
172 - E. Alecian 2008
Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured fossil field hypothesis suggests that a few percent of magnetic pre-main sequence A/B stars should exhibit similar magnetic strengths and topologies to the magnetic Ap/Bp stars. In this talk I will present the methods that we have used to characterise the magnetic fields of the Herbig Ae/Be stars, as well as our first conclusions on the origin of magnetism in intermediate-mass stars.
78 - Heidi Korhonen 2017
The recent years have brought great advances in our knowledge of magnetic fields in cool giant and supergiant stars. For example, starspots have been directly imaged on the surface of an active giant star using optical interferometry, and magnetic fields have been detected in numerous slowly rotating giants and even on supergiants. Here, I review what is currently known of the magnetism in cool giant and supergiant stars, and discuss the origin of these fields and what is theoretically known about them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا