Do you want to publish a course? Click here

Statistical Behavior of Embeddedness and Communities of Overlapping Cliques in Online Social Networks

192   0   0.0 ( 0 )
 Added by Ajay Sridharan Mr
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

Degree distribution of nodes, especially a power law degree distribution, has been regarded as one of the most significant structural characteristics of social and information networks. Node degree, however, only discloses the first-order structure of a network. Higher-order structures such as the edge embeddedness and the size of communities may play more important roles in many online social networks. In this paper, we provide empirical evidence on the existence of rich higherorder structural characteristics in online social networks, develop mathematical models to interpret and model these characteristics, and discuss their various applications in practice. In particular, 1) We show that the embeddedness distribution of social links in many social networks has interesting and rich behavior that cannot be captured by well-known network models. We also provide empirical results showing a clear correlation between the embeddedness distribution and the average number of messages communicated between pairs of social network nodes. 2) We formally prove that random k-tree, a recent model for complex networks, has a power law embeddedness distribution, and show empirically that the random k-tree model can be used to capture the rich behavior of higherorder structures we observed in real-world social networks. 3) Going beyond the embeddedness, we show that a variant of the random k-tree model can be used to capture the power law distribution of the size of communities of overlapping cliques discovered recently.



rate research

Read More

The conventional notion of community that favors a high ratio of internal edges to outbound edges becomes invalid when each vertex participates in multiple communities. Such a behavior is commonplace in social networks. The significant overlaps among communities make most existing community detection algorithms ineffective. The lack of effective and efficient tools resulted in very few empirical studies on large-scale detection and analyses of overlapping community structure in real social networks. We developed recently a scalable and accurate method called the Partial Community Merger Algorithm (PCMA) with linear complexity and demonstrated its effectiveness by analyzing two online social networks, Sina Weibo and Friendster, with 79.4 and 65.6 million vertices, respectively. Here, we report in-depth analyses of the 2.9 million communities detected by PCMA to uncover their complex overlapping structure. Each community usually overlaps with a significant number of other communities and has far more outbound edges than internal edges. Yet, the communities remain well separated from each other. Most vertices in a community are multi-membership vertices, and they can be at the core or the peripheral. Almost half of the entire network can be accounted for by an extremely dense network of communities, with the communities being the vertices and the overlaps being the edges. The empirical findings ask for rethinking the notion of community, especially the boundary of a community. Realizing that it is how the edges are organized that matters, the f-core is suggested as a suitable concept for overlapping community in social networks. The results shed new light on the understanding of overlapping community.
Community structure is a typical property of many real-world networks, and has become a key to understand the dynamics of the networked systems. In these networks most nodes apparently lie in a community while there often exists a few nodes straddling several communities. An ideal algorithm for community detection is preferable which can identify the overlapping communities in such networks. To represent an overlapping division we develop a encoding schema composed of two segments, the first one represents a disjoint partition and the second one represents a extension of the partition that allows of multiple memberships. We give a measure for the informativeness of a node, and present an evolutionary method for detecting the overlapping communities in a network.
129 - Dmitry Zinoviev 2014
Instant quality feedback in the form of online peer ratings is a prominent feature of modern massive online social networks (MOSNs). It allows network members to indicate their appreciation of a post, comment, photograph, etc. Some MOSNs support both positive and negative (signed) ratings. In this study, we rated 11 thousand MOSN member profiles and collected user responses to the ratings. MOSN users are very sensitive to peer ratings: 33% of the subjects visited the researchers profile in response to rating, 21% also rated the researchers profile picture, and 5% left a text comment. The grades left by the subjects are highly polarized: out of the six available grades, the most negative and the most positive are also the most popular. The grades fall into three almost equally sized categories: reciprocal, generous, and stingy. We proposed quantitative measures for generosity, reciprocity, and benevolence, and analyzed them with respect to the subjects demographics.
In the past decade, blogging web sites have become more sophisticated and influential than ever. Much of this sophistication and influence follows from their network organization. Blogging social networks (BSNs) allow individual bloggers to form contact lists, subscribe to other blogs, comment on blog posts, declare interests, and participate in collective blogs. Thus, a BSN is a bimodal venue, where users can engage in publishing (post) as well as in social (make friends) activities. In this paper, we study the co-evolution of both activities. We observed a significant positive correlation between blogging and socializing. In addition, we identified a number of user archetypes that correspond to mainly bloggers, mainly socializers, etc. We analyzed a BSN at the level of individual posts and changes in contact lists and at the level of trajectories in the friendship-publishing space. Both approaches produced consistent results: the majority of BSN users are passive readers; publishing is the dominant active behavior in a BSN; and social activities complement blogging, rather than compete with it.
Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a three degrees of influence property, and we review statistical approaches we have used to characterize inter-personal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا