Do you want to publish a course? Click here

Cupric chloride CuCl2 as an S=1/2 chain multiferroic

128   0   0.0 ( 0 )
 Added by Shinichiro Seki
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetoelectric properties were investigated for an S=1/2 chain antiferromagnet CuCl2, which turns out to be the first example of non-chalcogen based spiral-spin induced multiferroics. Upon the onset of helimagnetic order propagating along the b-axis under zero magnetic field (H), we found emergence of ferroelectric polarization along the c-axis. Application of H along the b-axis leads to spin-flop transition coupled with drastic suppression of ferroelectricity, and rotation of H around the b-axis induces the rotation of spin-spiral plane and associated polarization direction. These behaviors are explained well within the framework of the inverse Dzyaloshinskii-Moriya model, suggesting the robustness of this magnetoelectric coupling mechanism even under the strong quantum fluctuation.



rate research

Read More

Field-dependent specific heat and neutron scattering measurements were used to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At zero field the system acquires magnetic long-range order below TN=0.93K with an ordered moment of 0.44muB. An external field along the b-axis strengthens the zero-field magnetic order, while fields along the a- and c-axes lead to a collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T, respectively (for T=0.65K) and the formation of an energy gap in the excitation spectrum. We relate the field-induced gap to the presence of a staggered g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective staggered fields for magnetic fields applied along the a- and c-axes. Competition between anisotropy, inter-chain interactions and staggered fields leads to a succession of three phases as a function of field applied along the c-axis. For fields greater than mu0 Hc, we find a magnetic structure that reflects the symmetry of the staggered fields. The critical exponent, beta, of the temperature driven phase transitions are indistinguishable from those of the three-dimensional Heisenberg magnet, while measurements for transitions driven by quantum fluctuations produce larger values of beta.
We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain [Cu(pym)(H$_2$O)$_4$]SiF$_6cdot$H$_2$O (pym = pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of staggered $g$ tensors, a rich low-temperature excitation spectrum, a staggered susceptibility and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in non-chiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sine-Gordon model accounts well for the form of the temperature-dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of [Cu(pym)(H$_2$O)$_4$]SiF$_6cdot$H$_2$O, particularly a uniform Dzyaloshinskii-Moriya coupling and a four-fold periodic staggered field.
Inelastic neutron scattering was used to measure the magnetic field dependence of spin excitations in the antiferromagnetic S=1/2 chain CuCl_2 2(dimethylsulfoxide) (CDC) in the presence of uniform and staggered fields. Dispersive bound states emerge from a zero-field two-spinon continuum with different finite energy minima at wave numbers q=pi and q_i approx pi (1-2<S_z>). The ratios of the field dependent excitation energies are in excellent agreement with predictions for breather and soliton solutions to the quantum sine-Gordon model, the proposed low-energy theory for S=1/2 chains in a staggered field. The data are also consistent with the predicted soliton and n=1,2 breather polarizations and scattering cross sections.
We present a study of the one-dimensional S=1 antiferromagnetic spin chain with large easy plane anisotropy, with special emphasis on field-induced quantum phase transitions. Temperature and magnetic field dependence of magnetization, specific heat, and thermal conductivity is presented using a combination of numerical methods. In addition, the original S=1 model is mapped into the low-energy effective S=1/2 XXZ Heisenberg chain, a model which is exactly solvable using the Bethe ansatz technique. The effectiveness of the mapping is explored, and we show that all considered quantities are in qualitative, and in some cases quantitative, agreement. The thermal conductivity of the considered S=1 model is found to be strongly influenced by the underlying effective description. Furthermore, we elucidate the low-lying electron spin resonance spectrum, based on a semi--analytical Bethe ansatz calculation of the effective S=1/2 model.
100 - N. Uemoto , Y. Kono , S. Kittaka 2019
We present a model compound for the $S$=1/2 ferromagnetic Heisenberg chain composed of the verdazyl-based complex $[$Zn(hfac)$_2]$$[$4-Cl-$o$-Py-V-(4-F)$_2]$. $Ab$ $initio$ MO calculations indicate a predominant ferromagnetic interaction forming an $S$=1/2 ferromagnetic chain. The magnetic susceptibility and specific heat indicate a phase transition to an AF order owing to the finite interchain couplings. We explain the magnetic susceptibility and magnetization curve above the phase transition temperature based on the $S$=1/2 ferromagnetic Heisenberg chain. The magnetization curve in the ordered phase is described by a conventional AF two-sublattice model. Furthermore, the obtained magnetic specific heat reproduces the almost temperature-independent behavior of the $S$=1/2 ferromagnetic Heisenberg chain. In the low-temperature region, the magnetic specific heat exhibits $sqrt{T}$ dependence, which is attributed to the energy dispersion in the ferromagnetic chain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا