Do you want to publish a course? Click here

The peculiar Horizontal Branch of NGC 2808

143   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an accurate analysis of the peculiar Horizontal Branch (HB) of the massive Galactic globular cluster NGC 2808, based on high-resolution far-UV and optical images of the central region of the cluster obtained with HST. We confirm the multimodal distribution of stars along the HB: 4 sub-populations separated by gaps are distinguishable. The detailed comparison with suitable theoretical models showed that (i) it is not possible to reproduce the luminosity of the entire HB with a single helium abundance, while an appropriate modeling is possible for three HB groups by assuming different helium abundances in the range 0.24 < Y < 0.4 that are consistent with the multiple populations observed in the Main Sequence; (ii) canonical HB models are not able to properly match the observational properties of the stars populating the hottest end of the observed HB distribution, the so called blue-hook region. These objects are probably hot-flashers , stars that peel off the red giant branch before reaching the tip and ignite helium at high effective temperatures. Both of these conclusions are based on the luminosity of the HB in the optical and UV bands and do not depend on specific assumptions about mass loss.



rate research

Read More

We present the results obtained from the UV photometry of the globular cluster NGC 1261 using Far-UV (FUV) and Near-UV (NUV) images acquired with the Ultraviolet Imaging Telescope (UVIT) onboard the Astrosat satellite. We utilized the UVIT data combined with HST, GAIA, and ground-based optical photometric data to construct the different UV colour-magnitude diagrams (CMDs). We detected blue HB (BHB), and two extreme HB (EHB) stars in FUV, whereas full HB, i.e., red HB (RHB), BHB as well as EHB is detected in NUV CMDs. The 2 EHB stars, identified in both NUV and FUV, are confirmed members of the cluster. The HB stars form a tight sequence in UV-optical CMDs, which is almost aligned with Padova isochrones. This study sheds light on the significance of UV imaging to probe the HB morphology in GCs.
We use the pulsational properties of the RR Lyrae variables in the globular cluster NGC 1851 to obtain detailed constraints of the various sub-stellar populations present along its horizontal branch. On the basis of detailed synthetic horizontal branch modeling, we find that minor helium variations (Y~0.248-0.280) are able to reproduce the observed periods and amplitudes of the RR Lyrae variables, as well as the frequency of fundamental and first-overtone RR Lyrae stars. Comparison of number ratios amongst the blue and red horizontal branch components and the two observed subgiant branches also suggest that the RR Lyrae variables originated from the progeny of the bright subgiant branch. The RR Lyrae variables with a slightly enhanced helium (Y~0.270-0.280) have longer periods at a given amplitude, as is seen with Oosterhoff II (OoII) RR Lyrae variables, whereas the RR Lyrae variables with Y~0.248-0.270 have shorter periods, exhibiting properties of Oosterhoff I (OoI) variables. This correlation does suggest that the pulsational properties of RR Lyrae stars can be very useful for tracing the various sub-populations and can provide suitable constraints on the multiple population phenomenon. It appears of great interest to explore whether this conclusion can be generalized to other globular clusters hosting multiple populations.
We used FLAMES+GIRAFFE (Medusa mode) at the VLT to obtain moderately high resolution spectra for 30 red horizontal branch (RHB) stars, 4 RR Lyrae variables, and 17 blue horizontal branch (BHB) stars in the low-concentration, moderately metal-rich globular cluster NGC6723 ([Fe/H]=-1.22+/-0.08 from our present sample). The spectra were optimized to derive O and Na abundances. In addition, we obtained abundances for other elements, including N, Fe, Mg, Ca, Ni, and Ba. We used these data to discuss the evidence of a connection between the distribution of stars along the horizontal branch (HB) and the multiple populations that are typically present in globular clusters. We found that all RHB and most (13 out of 17) BHB stars are O-rich, Na-poor, and N-poor; these stars probably belong to the first stellar generation in this cluster. Only the four warmest observed stars are (moderately) O-poor, Na-rich, and N-rich, and they probably belong to the second generation. While our sample is not fully representative of the whole HB population in NGC6723, our data suggest that in this cluster only HB stars warmer than ~9000 K, that is one fourth of the total, belong to the second generation, if at all. Since in many other clusters this fraction is about two thirds, we conclude that the fraction of first/second generation in globular clusters may be strongly variable. In addition, the wide range in colour of chemically homogeneous first-generation HB stars requires a considerable spread in mass loss (>0.10 Mo). The reason for this spread is yet to be understood. Finally, we found a high Ba abundance, with a statistically significant radial abundance gradient.
We present the UV photometry of the globular cluster NGC 1851 using images acquired with the Ultra-violet Imaging Telescope (UVIT) onboard the ASTROSAT satellite. PSF-fitting photometric data derived from images in two far-UV (FUV) filters and one near-UV (NUV) filter are used to construct color-magnitude diagrams (CMD), in combination with HST and ground-based optical photometry. In the FUV, we detect only the bluest part of the cluster horizontal branch (HB); in the NUV, we detect the full extent of the HB, including the red HB, blue HB and a small number of RR Lyrae stars. UV variability was detected in 18 RR Lyrae stars, and 3 new variables were also detected in the central region. The UV/optical CMDs are then compared with isochrones of different age and metallicity (generated using Padova and BaSTI models) and synthetic HB (using helium enhanced $Y^2$ models). We are able to identify two populations among the HB stars, which are found to have either an age range of 10-12~Gyr, or a range in Y$_{ini}$ of 0.23 - 0.28, for a metallicity of [Fe/H] =$-$1.2 to $-$1.3. These estimations from the UV CMDs are consistent with those from optical studies. The almost complete sample of the HB stars tend to show a marginal difference in spatial/azimuthal distribution among the blue and red HB stars. This study thus show cases the capability of UVIT, with its excellent resolution and large field of view, to study the hot stellar population in Galactic globular clusters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا