Do you want to publish a course? Click here

Gate-controlled Guiding of Electrons in Graphene

168   0   0.0 ( 0 )
 Added by Charles M. Marcus
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronics, including magnetic focusing and lensing. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogs of optical devices having both positive and negative indices of refraction. Here, we use gate-controlled density with both p and n carrier types to demonstrate the analog of the fiber-optic guiding in graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding, based on the principle of angle-selective transmission though the graphene p-n interface, and (2) unipolar fiber-optic guiding, using total internal reflection controlled by carrier density. Modulation of guiding efficiency through gating is demonstrated and compared to numerical simulations, which indicates that interface roughness limits guiding performance, with few-nanometer effective roughness extracted. The development of p-n and fiber-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.



rate research

Read More

We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound $sigma$ orbital and the vacancy induced bound $pi$ state in an effective two-orbital single impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hunds rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilsons numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.
142 - J.-H. Chen , G. Aut`es , N. Alem 2014
Atomically precise tailoring of graphene can enable unusual transport pathways and new nanometer-scale functional devices. Here we describe a recipe for the controlled production of highly regular 5-5-8 line defects in graphene by means of simultaneous electron irradiation and Joule heating by applied electric current. High-resolution transmission electron microscopy reveals individual steps of the growth process. Extending earlier theoretical work suggesting valley-discriminating capabilities of a graphene 5-5-8 line defect, we perform first-principles calculations of transport and find a strong energy dependence of valley polarization of the charge carriers across the defect. These findings inspire us to propose a compact electrostatically gated valley valve device, a critical component for valleytronics.
The optical response of a heavily doped quantum well, with two occupied subbands, has been investigated as a function of the electronic density. It is shown that the two optically active transitions are mutually coupled by dipole-dipole Coulomb interaction, which strongly renormalizes their absorption amplitude. In order to demonstrate this effect, we have measured a set of optical spectra on a device in which the electronic density can be tuned by the application of a gate voltage. Our results show that the absorption spectra can be correctly described only by taking into account the Coulomb coupling between the two transitions. As a consequence, the optical dipoles originating from intersubband transitions are not independent, but rather coupled oscillators with an adjustable strength.
58 - Z. Nosan , P. Marki , N. Hauff 2019
The parametron, a resonator-based logic device, is a promising physical platform for emerging computational paradigms. When the parametron is subject to both parametric pumping and external driving, complex phenomena arise that can be harvested for applications. In this paper, we experimentally demonstrate deterministic phase switching of a parametron by applying frequency tuning pulses. To our surprise, we find different regimes of phase switching due to the interplay between a parametric pump and an external drive. We provide full modeling of our device with numerical simulations and find excellent agreement between model and measurements. Our result opens up new possibilities for fast and robust logic operations within large-scale parametron architectures.
Quantum confinenement and manipulation of charge carriers are critical for achieving devices practical for quantum technologies. The interplay between electron spin and valley, as well as the possibility to address their quantum states electrically and optically, make two-dimensional (2D) transition metal dichalcogenides an emerging platform for the development of quantum devices. In this work, we fabricate devices based on heterostructures of layered 2D materials, in which we realize gate-controlled tungsten diselenide (WSe2) hole quantum dots. We discuss the observed mesoscopic transport features related to the emergence of quantum dots in the WSe2 device channel, and we compare them to a theoretical model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا