Do you want to publish a course? Click here

Models of turbulent dissipation regions in the diffuse interstellar medium

284   0   0.0 ( 0 )
 Added by Benjamin Godard
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supersonic turbulence is a large reservoir of suprathermal energy in the interstellar medium. Its dissipation, because it is intermittent in space and time, can deeply modify the chemistry of the gas. We further explore a hybrid method to compute the chemical and thermal evolution of a magnetized dissipative structure, under the energetic constraints provided by the observed properties of turbulence in the cold neutral medium. For the first time, we model a random line of sight by taking into account the relative duration of the bursts with respect to the thermal and chemical relaxation timescales of the gas. The key parameter is the turbulent rate of strain a due to the ambient turbulence. With the gas density, it controls the size of the dissipative structures, therefore the strength of the burst. For a large range of rates of strain and densities, the models of turbulent dissipation regions (TDR) reproduce the CH+ column densities observed in the diffuse medium and their correlation with highly excited H2. They do so without producing an excess of CH. As a natural consequence, they reproduce the abundance ratios of HCO+/OH and HCO+/H2O, and their dynamic range of about one order of magnitude observed in diffuse gas. Large C2H and CO abundances, also related to those of HCO+, are another outcome of the TDR models that compare well with observed values. The abundances and column densities computed for CN, HCN and HNC are one order of magnitude above PDR model predictions, although still significantly smaller than observed values.



rate research

Read More

Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of the present study is a comparison of the mid-IR spectra of laboratory silicate-grains/water-ice mixtures with astronomical observations to evaluate the presence of dust/ice mixtures in interstellar and circumstellar environments. The laboratory data can explain the observations assuming reasonable mass-averaged temperatures for the protostellar envelopes and protoplanetary disks demonstrating that a substantial fraction of water ice may be mixed with silicate grains. Based on the combination of laboratory data and infrared observations, we provide evidence of the presence of solid-state water in the diffuse interstellar medium. Our results have implications for future laboratory studies trying to investigate cosmic dust grain analogues and for future observations trying to identify the structure, composition, and temperature of grains in different astrophysical environments.
Context: The interstellar medium (ISM) on all scales is full of structures that can be used as tracers of processes that feed turbulence. Aims: We used HI survey data to derive global properties of the angular power distribution of the local ISM. Methods: HI4PI observations on an nside = 1024 HEALPix grid and Gaussian components representing three phases, the cold, warm, and unstable lukewarm neutral medium (CNM, WNM, and LNM), were used for velocities $|v_{mathrm{LSR}}| leq 25$ kms. For high latitudes $|b| > 20deg$ we generated apodized maps. After beam deconvolution we fitted angular power spectra. Results: Power spectra for observed column densities are exceptionally well defined and straight in log-log presentation with 3D power law indices $gamma geq -3$ for the local gas. For intermediate velocity clouds (IVCs) we derive $gamma = -2.6$ and for high velocity clouds (HVCs) $gamma = -2.0$. Single-phase power distributions for the CNM, LNM, and WNM are highly correlated and shallow with $ gamma sim -2.5$ for multipoles $l leq 100$. Excess power from cold filamentary structures is observed at larger multipoles. The steepest single-channel power spectra for the CNM are found at velocities with large CNM and low WNM phase fractions. Conclusions: The phase space distribution in the local ISM is configured by phase transitions and needs to be described with three distinct different phases, being highly correlated but having distributions with different properties. Phase transitions cause locally hierarchical structures in phase space. The CNM is structured on small scales and is restricted in position-velocity space. The LNM as an interface to the WNM envelops the CNM. It extends to larger scales than the CNM and covers a wider range of velocities. Correlations between the phases are self-similar in velocity.
132 - O. Berne , N. L. J. Cox , G. Mulas 2017
Emission of fullerenes in their infrared vibrational bands has been detected in space near hot stars. The proposed attribution of the diffuse interstellar bands at 9577 and 9632 AA to electronic transitions of the buckminsterfullerene cation (i.e. C$_{60}^+$ ) was recently supported by new laboratory data, confirming the presence of this species in the diffuse interstellar medium (ISM). In this letter, we present the detection, also in the diffuse ISM, of the 17.4 and 18.9 $mu$m emission bands commonly attributed to vibrational bands of neutral C$_{60}$. According to classical models that compute the charge state of large molecules in space, C$_{60}$ is expected to be mostly neutral in the diffuse ISM. This is in agreement with the abundances of diffuse C$_{60}$ we derive here from observations.
With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances and Galactic coordinates). Many different plots of the diffuse interstellar bands and their maps were produced and further analysed. There appears to be a structure in the plot of equivalent widths of 5780$r{A}$ DIB (and 6284$r{A}$ DIB) against the Galactic $x$-coordinate. The structure is well defined below $sim150$ m$r{A}$ and within $|x|<250$ pc, peaking around $x=170$ pc. We argue that the origin of this structure is not a statistical fluctuation. Splitting the data in the Galactic longitude into several subregions improves or lowers the well known linear relation between the equivalent widths and the colour excess, which was expected. However, some of the lines of sight display drastically different behaviour. The region within $150^circ<l<200^circ$ shows scatter in the correlation plots with the colour excess for all of the four bands with correlation coefficients $textrm{R}<0.58$. We suspect that the variation of physical conditions in the nearby molecular clouds could be responsible. Finally, the area $250^circ<l<300^circ$ displays (from the statistical point of view) significantly lower values of equivalent widths than the other regions -- this tells us that there is either a significant underabundance of carriers (when compared with the other regions) or that this has to be a result of an observational bias.
Grain growth by accretion of gas-phase metals is a common assumption in models of dust evolution, but in dense gas, where the timescale is short enough for accretion to be effective, material is accreted in the form of ice mantles rather than adding to the refractory grain mass. It has been suggested that negatively-charged small grains in the diffuse interstellar medium (ISM) can accrete efficiently due to the Coulomb attraction of positively-charged ions, avoiding this issue. We show that this inevitably results in the growth of the small-grain radii until they become positively charged, at which point further growth is effectively halted. The resulting gas-phase depletions under diffuse ISM conditions are significantly overestimated when a constant grain size distribution is assumed. While observed depletions can be reproduced by changing the initial size distribution or assuming highly efficient grain shattering, both options result in unrealistic levels of far-ultraviolet extinction. We suggest that the observed elemental depletions in the diffuse ISM are better explained by higher initial depletions, combined with inefficient dust destruction by supernovae at moderate ($n_{rm H} sim 30 {rm , cm^{-3}}$) densities, rather than by higher accretion efficiences.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا