The magnetic excitation spectrum of the unconventional ferromagnet CeRh$_{3}$B$_{2}$ was measured by inelastic neutron scattering on single crystal sample in the magnetically ordered and paramagnetic phases. The spin-wave excitation spectrum evidences high exchange interaction along the c-axis about two orders of magnitude higher than the ones in the basal plane of the hexagonal structure. Both strong out of plane and small in plane anisotropies are found. This latter point confirms that considering the $J$=5/2 multiplet alone is not adequate for describing the ground state of CeRh$_{3}$B$_{2}$. Quasielastic scattering measured above $T_{Curie}$ is also strongly anisotropic between the basal plane and the c-axis and suggests localized magnetism.
We determine the excitation spectrum of a bosonic dipolar quantum gas in a one-dimensional geometry, from the dynamical density-density correlation functions simulated by means of Reptation Quantum Monte Carlo techniques. The excitation energy is always vanishing at the first vector of the reciprocal lattice in the whole crossover from the liquid-like at low density to the quasi-ordered state at high density, demonstrating the absence of a roton minimum. Gaps at higher reciprocal lattice vectors are seen to progressively close with increasing density, while the quantum state evolves into a quasi-periodic structure. The simulational data together with the uncertainty-principle inequality also provide a rigorous proof of the absence of long-range order in such a super-strongly correlated system. Our conclusions confirm that the dipolar gas is in a Luttinger-liquid state, significantly affected by the dynamical correlations. The connection with ongoing experiments is also discussed.
We investigate the spin dynamics in the superconducting phase of UTe$_{2}$ by triple-axis inelastic neutron scattering on a single crystal sample. At the wave-vector $bf{k_1}$=(0, 0.57, 0), where the normal state antiferromagnetic correlations are peaked, a modification of the excitation spectrum is evidenced, on crossing the superconducting transition, with a reduction of the relaxation rate together with the development of an inelastic peak at $Omega$ $approx$ 1 meV. The low dimensional nature and the the $a$-axis polarization of the fluctuations, that characterise the normal state, are essentially maintained below $T_{sc}$. The high ratio $Omega/k_{B}T_{sc}$ $approx$ 7.2 contrasts with the most common behaviour in heavy fermion superconductors.
We have explored the magnetic excitation spectrum of the S=1/2 square lattice Heisenberg antiferromagnet, K2V3O8 using both triple-axis and time-of-flight inelastic neutron scattering. The long-wavelength spin waves are consistent with the previously determined Hamiltonian for this material. A small energy gap of 72+/-9 micro-eV is observed at the antiferromagnetic zone center and the near-neighbor exchange constant is determined to be 1.08+/-0.03 meV. A finite ferromagnetic interplanar coupling is observed along the crystallographic c-axis with a magnitude of Jc=-0.0036+/-0.006 meV. However, upon approaching the zone boundary, the observed excitation spectrum deviates significantly from the expectation of linear spin wave theory resulting in split modes at the (pi/2,pi/2) zone boundary point. The effects of magnon-phonon interaction, orbital degrees of freedom, multimagnon scattering, and dilution/site randomness are considered in the context of the mode splitting. Unfortunately, no fully satisfactory explanation of this phenomenon is found and further theoretical and experimental work is needed.
Co3Sn2S2 has generated a growing interest as a rare example of the highly uniaxial anisotropic kagome ferromagnet showing a combination of frustrated-lattice magnetism and topology. Recently, via precise measurements of the magnetization and AC susceptibility we have found a low-field anomalous magnetic phase (A-phase) with very slow spin dynamics that appears just below the Curie temperature (T_C). The A-phase hosts high-density domain bubbles after cooling through T_C as revealed in a previous in-situ Lorentz-TEM study. Here, we present further signatures of the anomalous magnetic transition (MT) at T_C revealed by a study of the critical behaviors of the magnetization and magnetocaloric effect using a high-quality single crystal. Analyses of numerous magnetization isotherms around T_C (177 K) using different approaches (the modified Arrot plot, Kouvel-Fisher method and magnetocaloric effect) result in consistent critical exponents that do not satisfy the theoretical predictions of standard second-order-MT models. Scaling analyses for the magnetization, magnetic entropy change and field-exponent of the magnetic entropy change, all consistently show low-field deviations below TC from the universal curves. Our results reveal that the MT of Co3Sn2S2 can not be explained as a conventional second-order type and suggest an anomalous magnetic state below T_C.
CeRh$_6$Ge$_4$ is an unusual example of a stoichiometric heavy fermion ferromagnet, which can be cleanly tuned by hydrostatic pressure to a quantum critical point. In order to understand the origin of this anomalous behavior, we have characterized the magnetic ordering and crystalline electric field (CEF) scheme of this system. While magnetic Bragg peaks are not resolved in neutron powder diffraction, coherent oscillations are observed in zero-field $mu$SR below $T_{rm C}$, which are consistent with in-plane ferromagnetic ordering consisting of reduced Ce moments. From analyzing the magnetic susceptibility and inelastic neutron scattering, we propose a CEF-level scheme which accounts for the easy-plane magnetocrystalline anisotropy, and suggests that the orbital anisotropy of the ground state and low lying excited state doublets is an important factor giving rise to the observed anisotropic hybridization.
S. Raymond
,J. Panarin
,F. Givord
.
(2010)
.
"Low energy magnetic excitation spectrum of the unconventional ferromagnet CeRh$_{3}$B$_{2}$"
.
Stephane Raymond
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا