Do you want to publish a course? Click here

Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance

147   0   0.0 ( 0 )
 Added by Satoshi Tojo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate controlled phase separation of a binary Bose-Einstein condensate (BEC) in the proximity of mixed-spin-channel Feshbach resonance in the |F = 1, mF = +1> and |F = 2,mF = -1> states of 87Rb at a magnetic field of 9.10 G. Phase separation occurs on the lower magnetic-field side of the Feshbach resonance while the two components overlap on the higher magnetic-field side. The Feshbach resonance curve of the scattering length is obtained from the shape of the atomic cloud by comparison with the numerical analysis of coupled Gross-Pitaevskii equations.



rate research

Read More

We investigate phase separation of Bose-Einstein condensates (BECs) of two-component atoms and one-component molecules with a homonuclear Feshbach resonance. We develop a full model for dilute atomic and molecular gases including correlation of the Feshbach resonance and all kinds of interparticle interactions, and numerically calculate order parameters of the BECs in spherical harmonic oscillator traps at zero temperature with the Bogoliubovs classical field approximation. As a result, we find out that the Feshbach resonance can induce two types of phase separation. The actual phase structures and density profiles of the trapped gases are predicted in the whole parameter region, from the atom dominant regime to the molecule dominant regime. We focus on the role of the molecules in the phase separation. Especially in the atom dominant regime, the role of the molecules is described through effective interactions derived from our model. Furthermore we show that a perturbative and semi-classical limit of our model reproduces the conventional atomic BEC (single-channel) model.
For the observation of Bose-Einstein condensation, excitons in cuprous oxide are regarded as promising candidates due to their large binding energy and long lifetime. High particle densities may be achieved by entrapment in a stress induced potential. We consider a multi-component gas of interacting para- and orthoexcitons in cuprous oxide confined in a three-dimensional potential trap. Based on the Hartree-Fock-Bogoliubov theory, we calculate density profiles as well as decay luminescence spectra which exhibit signatures of the separation of the Bose-condensed phases.
Granulation of quantum matter -- the formation of persistent small-scale patterns -- is realized in the images of quasi-one-dimensional Bose-Einstein condensates perturbed by a periodically modulated interaction. Our present analysis of a mean-field approximation suggests that granulation is caused by the gradual transformation of phase undulations into density undulations. This is achieved by a suitably large modulation frequency, while for low enough frequencies the system exhibits a quasi-adiabatic regime. We show that the persistence of granulation is a result of the irregular evolution of the phase of the wavefunction representing an irreversible process. Our model predictions agree with numerical solutions of the Schrodinger equation and experimental observations. The numerical computations reveal the emergent many-body correlations behind these phenomena via the multi-configurational time-dependent Hartree theory for bosons (MCTDHB).
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter, based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible regime, with collisions becoming only important in the long time evolution.
151 - L. Wen , W. M. Liu , Yongyong Cai 2012
We point out that the widely accepted condition g11g22<g122 for phase separation of a two-component Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the intercomponent interaction and favors phase mixing. Here g11, g22, and g12 are the intra- and intercomponent interaction strengths, respectively. Taking a d-dimensional infinitely deep square well potential of width L as an example, a simple scaling analysis shows that if d=1 (d=3), phase separation will be suppressed as Lrightarrow0 (Lrightarrowinfty) whether the condition g11g22<g122 is satisfied or not. In the intermediate case of d=2, the width L is irrelevant but again phase separation can be partially or even completely suppressed even if g11g22<g122. Moreover, the miscibility-immiscibility transition is turned from a first-order one into a second-order one by the kinetic energy. All these results carry over to d-dimensional harmonic potentials, where the harmonic oscillator length {xi}ho plays the role of L. Our finding provides a scenario of controlling the miscibility-immiscibility transition of a two-component condensate by changing the confinement, instead of the conventional approach of changing the values of the gs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا