No Arabic abstract
A nonlinear interferometry scheme is described theoretically to induce and resolve electron wave- function beating on time scales shorter than the optical cycle of the time-delayed pump and probe pulses. By employing two moderately intense few-cycle laser fields with a stable carrier-envelope phase, a large range of the entire electronic level structure of a quantum system can be retrieved. In contrast to single-photon excitation schemes, the retrieved electronic states include levels that are both dipole- and non-dipole-accessible from the ground electronic state. The results show that strong-field interferometry can reveal both high-resolution and broad-band spectral information at the same time with important consequences for quantum-beat spectroscopy on attosecond or even shorter time scales.
We report on the unambiguous observation of the sub-cycle ionization bursts in sequential strong-field double ionization of H$_2$ and their disentanglement in molecular frame photoelectron angular distributions. This observation was made possible by the use of few-cycle laser pulses with a known carrier-envelope phase in combination with multi-particle coincidence momentum imaging. The approach demonstrated here will allow sampling of the intramolecular electron dynamics and the investigation of charge-state specific Coulomb-distortions on emitted electrons in polyatomic molecules.
We introduce and experimentally demonstrate a method, where the two intrinsic time scales of a molecule, the slow nuclear motion and the fast electronic motion, are simultaneously measured in a photo-electron photo-ion coincidence experiment. In our experiment, elliptically polarized, 750~nm, 4.5~fs laser pulses were focused to an intensity of $9times10^{14}mathrm{W/cm}^2$ onto H$_2$. Using coincidence imaging, we directly observe the nuclear wavepacket evolving on the ssg{} state of H$_2^+$ during its first roundtrip with attosecond temporal and picometer spatial resolution. The demonstrated method should enable insight into the first few femtoseconds of the vibronic dynamics of ionization-induced unimolecular reactions of larger molecules.
The use of strong-field (i.e. intensities in excess of 10^13 Wcm-2) few-cycle ultrafast (durations of 10 femtoseconds or less) laser pulses to create, manipulate and image vibrational wavepackets is investigated. Quasi-classical modelling of the initial superposition through tunnel ionization, wavepacket modification by nonadiabatically altering the nuclear environment via the transition dipole and the Stark effect, and measuring the control outcome by fragmenting the molecule is detailed. The influence of the laser intensity on strong-field ultrafast wavepacket control is discussed in detail: by modifying the distribution of laser intensities imaged, we show that focal conditions can be created that give preference to this three-pulse technique above processes induced by the pulses alone. An experimental demonstration is presented, and the nuclear dynamics inferred by the quasi-classical model discussed. Finally, we present the results of a systematic investigation of a dual-control pulse scheme, indicating that single vibrational states should be observable with high fidelity, and the populated state defined by varying the arrival time of the two control pulses. The relevance of such strong-field coherent control methods to the manipulation of electron localization and attosecond science is discussed.
Sub-laser cycle time scale of electronic response to strong laser fields enables attosecond dynamical imaging in atoms, molecules and solids. Optical tunneling and high harmonic generation are the hallmarks of attosecond imaging in optical domain, including imaging of phase transitions in solids. Topological phase transition yields a state of matter intimately linked with electron dynamics, as manifested via the chiral edge currents in topological insulators. Does topological state of matter leave its mark on optical tunneling and sub-cycle electronic response? We identify distinct topological effects on the directionality and the attosecond timing of currents arising during electron injection into conduction bands. We show that electrons tunnel across the band gap differently in trivial and topological phases, for the same band structure, and identify the key role of the Berry curvature in this process. These effects map onto topologically-dependent attosecond delays in high harmonic emission and the helicities of the emitted harmonics, which can record the phase diagram of the system and its topological invariants. Thus, the topological state of the system controls its attosecond, highly non-equilibrium electronic response to strong low-frequency laser fields, in bulk. Our findings create new roadmaps in studies of topological systems, building on ubiquitous properties of sub-laser cycle strong field response - a unique mark of attosecond science.
Sub-10-attosecond pulses with half-cycle electric fields provide exceptional options to detect and manipulate electrons in the atomic timescale. However, the availability of such pulses is still challenging. Here, we propose a method to generate isolated sub-10-attosecond half-cycle pulses based on a cascade process naturally happening in plasma. A 100s-attosecond pulse is first generated by shooting a moderate overdense plasma with a one-cycle femtosecond pulse. After that, the generated attosecond pulse cascadedly produce a sub-10-attosecond half-cycle pulse in the transmission direction by unipolarly perturbing a nanometer-thin relativistic electron sheet naturally form in the plasma. Two-dimensional particle-in-cell simulations indicate that an isolated half-cycle pulse with the duration of 8.3 attoseconds can be produced. Apart from one-cycle driving pulse, such a scheme also can be realized with a commercial 100-TW 25-fs driving laser by shaping the pulse with a relativistic plasma lens in advance.