Do you want to publish a course? Click here

Doping evolution of superconducting gaps and electronic densities of states in Ba(Fe1-xCox)2As2 iron pnictides

166   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

An extensive calorimetric study of the normal- and superconducting-state properties of Ba(Fe1-xCox)2As2 is presented for 0 < x < 0.2. The normal-state Sommerfeld coefficient increases (decreases) with Co doping for x < 0.06 (x > 0.06), which illustrates the strong competition between magnetism and superconductivity to monopolize the Fermi surface in the underdoped region and the filling of the hole bands for overdoped Ba(Fe1-xCox)2As2. All superconducting samples exhibit a residual electronic density of states of unknown origin in the zero-temperature limit, which is minimal at optimal doping but increases to the normal-state value in the strongly under- and over-doped regions. The remaining specific heat in the superconducting state is well described using a two-band model with isotropic s-wave superconducting gaps.



rate research

Read More

131 - M. Nakajima , S. Ishida , K. Kihou 2010
We investigated the optical spectrum of Ba(Fe1-xCox)2As2 single crystals with various doping levels. It is found that the low-energy optical conductivity spectrum of this system can be decomposed into two components: a sharp Drude term and a broad incoherent term. For the compounds showing magnetic order, a gap appears predominantly in the incoherent component, while an s-wave like superconducting gap opens in both components for highly doped compounds. The Drude weight steadily increases as doping proceeds, consistent with electron doping in this system. On the other hand, the incoherent spectral weight is almost doping independent, but its spectral feature is intimately connected with the magnetism. We demonstrate that the presence of two distinct components in the optical spectrum well explains the doping and temperature dependences of the dc resistivity.
Platelet-like single crystals of the Ca(Fe1-xCox)2As2 series having lateral dimensions up to 15 mm and thickness up to 0.5 mm were obtained from the high temperature solution growth technique using Sn flux. Upon Co doping, the c-axis of the tetragonal unit cell decreases, while the a-axis shows a less significant variation. Pristine CaFe2As2 shows a combined spin-density-wave and structural transition near T = 166 K which gradually shifts to lower temperatures and splits with increasing Co-doping. Both transitions terminate abruptly at a critical Co-concentration of xc = 0.075. For x geq 0.05, superconductivity appears at low temperatures with a maximum transition temperature TC of around 20 K. The superconducting volume fraction increases with Co concentration up to x = 0.09 followed by a gradual decrease with further increase of the doping level. The electronic phase diagram of Ca(Fe1-xCox)2As2 (0 leq x leq 0.2) series is constructed from the magnetization and electric resistivity data. We show that the low-temperature superconducting properties of Co-doped CaFe2As2 differ considerably from those of BaFe2As2 reported previously. These differences seem to be related to the extreme pressure sensitivity of CaFe2As2 relative to its Ba counterpart.
141 - S. Lee , J. Jiang , J. D. Weiss 2009
We show that despite the low anisotropy, strong vortex pinning and high irreversibility field Hirr close to the upper critical field Hc2 of Ba(Fe1-xCox)2As2, the critical current density Jgb across [001] tilt grain boundaries (GBs) of thin film Ba(Fe1-xCox)2As2 bicrystals is strongly depressed, similar to high-Tc cuprates. Our results suggest that weak-linked GBs are characteristic of both cuprates and pnictides because of competing orders, low carrier density, and unconventional pairing symmetry.
99 - X. Yang , L. Luo , M. Mootz 2018
Ultrafast terahertz (THz) pump{probe spectroscopy reveals unusual out-of-equilibrium Cooper pair dynamics driven by femtosecond (fs) optical quench of superconductivity (SC) in iron pnictides. We observe a two{step quench of the SC gap, where an abnormally slow (many 100s of ps) quench process is clearly distinguished from the usual fast (sub-ps) hot{phonon{mediated scattering channel. This pair breaking dynamics depends strongly on doping, pump uence, and temperature. The above observations, together with quantum kinetic modeling of non-equilibrium SC and magnetic correlations, provide evidence for photogeneration of a transient state where SC competes with build{up of spin-density-wave (SDW) excitonic correlation between quasi-particles (QP).
We investigated the elastic properties of the iron-based superconductor Ba(Fe1-xCox)2As2 with eight Co concentrations. The elastic constant C66 shows large elastic softening associated with the structural phase transition. The C66 was analyzed base on localized and itinerant pictures of Fe-3d electrons, which shows the strong electron-lattice coupling and a possible mass enhancement in this system. The results resemble those of unconventional superconductors, where the properties of the system are governed by the quantum fluctuations associated with the zero-temperature critical point of the long-range order; namely, the quantum critical point (QCP). In this system, the inverse of C66 behaves just like the magnetic susceptibility in the magnetic QCP systems. While the QCPs of these existing superconductors are all ascribed to antiferromagnetism, our systematic studies on the canonical iron-based superconductor Ba(Fe1-xCox)2As2 have revealed that there is a signature of structural quantum criticality in this material, which is so far without precedent. The elastic constant anomaly is suggested to concern with the emergence of superconductivity. These results highlight the strong electron-lattice coupling and effect of the band in this system, thus challenging the prevailing scenarios that focus on the role of the iron 3d-orbitals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا