Do you want to publish a course? Click here

Spectrum Generating Algebras for the free motion in $S^3$

157   0   0.0 ( 0 )
 Added by George Pronko
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct the spectrum generating algebra (SGA) for a free particle in the three dimensional sphere $S^3$ for both, classical and quantum descriptions. In the classical approach, the SGA supplies time-dependent constants of motion that allow to solve algebraically the motion. In the quantum case, the SGA include the ladder operators that give the eigenstates of the free Hamiltonian. We study this quantum case from two equivalent points of view.



rate research

Read More

In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra of the system plus a subalgebra of operators that give the spectrum of the system and connects the eigenfunctions of the Hamiltonian among themselves. In our case, the geometrical symmetry algebra is $frak{so}(3,1)$ and the SGA is $frak{so}(4,2)$. We start with a representation of $frak{so}(4,2)$ by functions on a realization of the Lobachevski space given by a two sheeted hyperboloid, where the Lie algebra commutators are the usual Poisson-Dirac brackets. Then, introduce a quantized version of the representation in which functions are replaced by operators on a Hilbert space and Poisson-Dirac brackets by commutators. Eigenfunctions of the Hamiltonian are given and naive ladder operators are identified. The previously defined naive ladder operators shift the eigenvalues by a complex number so that an alternative approach is necessary. This is obtained by a non self-adjoint function of a linear combination of the ladder operators which gives the correct relation among the eigenfunctions of the Hamiltonian. We give an eigenfunction expansion of functions over the upper sheet of two sheeted hyperboloid in terms of the eigenfunctions of the Hamiltonian.
When discussing consequences of symmetries of dynamical systems based on Noethers first theorem, most standard textbooks on classical or quantum mechanics present a conclusion stating that a global continuous Lie symmetry implies the existence of a time independent conserved Noether charge which is the generator of the action on phase space of that symmetry, and which necessarily must as well commute with the Hamiltonian. However this need not be so, nor does that statement do justice to the complete scope and reach of Noethers first theorem. Rather a much less restrictive statement applies, namely that the corresponding Noether charge as an observable over phase space may in fact possess an explicit time dependency, and yet define a constant of the motion by having a commutator with the Hamiltonian which is nonvanishing, thus indeed defining a dynamical conserved quantity. Furthermore, and this certainly within the Hamiltonian formulation, the converse statement is valid as well, namely that any dynamical constant of motion is necessarily the Noether charge of some symmetry leaving the systems action invariant up to some total time derivative contribution. The present contribution revisits these different points and their consequences, straightaway within the Hamiltonian formulation which is the most appropriate for such issues. Explicit illustrations are also provided through three general but simple enough classes of systems.
The formalism of SUSYQM (SUperSYmmetric Quantum Mechanics) is properly modified in such a way to be suitable for the description and the solution of a classical maximally superintegrable Hamiltonian System, the so-called Taub-Nut system, associated with the Hamiltonian: $$ mathcal{H}_eta ({mathbf{q}}, {mathbf{p}}) = mathcal{T}_eta ({mathbf{q}}, {mathbf{p}}) + mathcal{U}_eta({mathbf{q}}) = frac{|{mathbf{q}}| {mathbf{p}}^2}{2m(eta + |{mathbf{q}}|)} - frac{k}{eta + |{mathbf{q}}|} quad (k>0, eta>0) , .$$ In full agreement with the results recently derived by A. Ballesteros et al. for the quantum case, we show that the classical Taub-Nut system shares a number of essential features with the Kepler system, that is just its Euclidean version arising in the limit $eta to 0$, and for which a SUSYQM approach has been recently introduced by S. Kuru and J. Negro. In particular, for positive $eta$ and negative energy the motion is always periodic; it turns out that the period depends upon $ eta$ and goes to the Euclidean value as $eta to 0$. Moreover, the maximal superintegrability is preserved by the $eta$-deformation, due to the existence of a larger symmetry group related to an $eta$-deformed Runge-Lenz vector, which ensures that in $mathbb{R}^3$ closed orbits are again ellipses. In this context, a deformed version of the third Keplers law is also recovered. The closing section is devoted to a discussion of the $eta<0$ case, where new and partly unexpected features arise.
104 - Ruipu Bai , Yan Zhang 2019
A new 3-ary non-associative algebra, which is called a semi-associative $3$-algebra, is introduced, and the double modules and double extensions by cocycles are provided. Every semi-associative $3$-algebra $(A, { , , })$ has an adjacent 3-Lie algebra $(A, [ , , ]_c)$. From a semi-associative $3$-algebra $(A, {, , })$, a double module $(phi, psi, M)$ and a cocycle $theta$, a semi-direct product semi-associative $3$-algebra $Altimes_{phipsi} M $ and a double extension $(Adot+A^*, { , , }_{theta})$ are constructed, and structures are studied.
236 - Maryna Nesterenko 2012
S-expansions of three-dimensional real Lie algebras are considered. It is shown that the expansion operation allows one to obtain a non-unimodular Lie algebra from a unimodular one. Nevertheless S-expansions define no ordering on the variety of Lie algebras of a fixed dimension.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا