Do you want to publish a course? Click here

Water formation on bare grains: When the chemistry on dust impacts interstellar gas

331   0   0.0 ( 0 )
 Added by Cazaux
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Water together with O2 are important gas phase ingredients to cool dense gas in order to form stars. On dust grains, H2 O is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core observations. The formation of water can occur on dust grain surfaces, and can impact gas phase composition. Aims. The formation of molecules such as OH, H2 O, HO2, H2 O2, as well as their deuterated forms and O2 and O3 is studied in order to assess how the chemistry varies in different astrophysical environments, and how the gas phase is affected by grain surface chemistry. Methods. We use Monte Carlo simulations to follow the formation of molecules on bare grains as well as the fraction of molecules released into the gas phase. We consider a surface reaction network, based on gas phase reactions, as well as UV photo-dissociation of the chemical species. Results. We show that grain surface chemistry has a strong impact on gas phase chemistry, and that this chemistry is very different for different dust grain temperatures. Low temperatures favor hydrogenation, while higher temperatures favor oxygenation. Also, UV photons dissociate the molecules on the surface, that can reform subsequently. The formation-destruction cycle increases the amount of species released into the gas phase. We also determine the time scales to form ices in diffuse and dense clouds, and show that ices are formed only in shielded environments, as supported by observations.



rate research

Read More

Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smallest amides is investigated in the laboratory. To this end, CH$_{4}$:HNCO ice mixtures at 20 K are irradiated with far-UV photons, where the radiation is used as a tool to produce the radicals required for the formation of the amides. Products are identified and investigated with infrared spectroscopy and temperature programmed desorption mass spectrometry. The laboratory data show that NH$_{2}$CHO, CH$_{3}$NCO, NH$_{2}$C(O)NH$_{2}$, CH$_{3}$C(O)NH$_{2}$ and CH$_{3}$NH$_{2}$ can simultaneously be formed. The NH$_{2}$CO radical is found to be key in the formation of larger amides. In parallel, ALMA observations towards the low-mass protostar IRAS 16293-2422B are analysed in search of CH$_{3}$NHCHO (N-methylformamide) and CH$_{3}$C(O)NH$_{2}$ (acetamide). CH$_{3}$C(O)NH$_{2}$ is tentatively detected towards IRAS 16293-2422B at an abundance comparable with those found towards high-mass sources. The combined laboratory and observational data indicates that NH$_{2}$CHO and CH$_{3}$C(O)NH$_{2}$ are chemically linked and form in the ice mantles of interstellar dust grains. A solid-state reaction network for the formation of these amides is proposed.
Chemical modelling of AGB outflows is typically focused on either non-thermodynamic equilibrium chemistry in the inner region or photon-driven chemistry in the outer region. We include, for the first time, a comprehensive dust-gas chemistry in our AGB outflow chemical kinetics model, including both dust-gas interactions and grain-surface chemistry. The dust is assumed to have formed in the inner region, and follows an interstellar-like dust-size distribution. Using radiative transfer modelling, we obtain dust temperature profiles for different dust types in an O-rich and a C-rich outflow. We calculate a grid of models, sampling different outflow densities, drift velocities between the dust and gas, and dust types. Dust-gas chemistry can significantly affect the gas-phase composition, depleting parent and daughter species and increasing the abundance of certain daughter species via grain-surface formation followed by desorption/sputtering. Its influence depends on four factors: outflow density, dust temperature, initial composition, and drift velocity. The largest effects are for higher density outflows with cold dust and O-rich parent species, as these species generally have a larger binding energy. At drift velocities larger than $sim 10$ km s$^{-1}$, ice mantles undergo sputtering; however, they are not fully destroyed. Models with dust-gas chemistry can better reproduce the observed depletion of species in O-rich outflows. When including colder dust in the C-rich outflows and adjusting the binding energy of CS, the depletion in C-rich outflows is also better reproduced. To best interpret high-resolution molecular line observations from AGB outflows, dust-gas interactions are needed in chemical kinetics models.
Herschel PACS and SPIRE images have been obtained of NGC 6720 (the Ring Nebula). This is an evolved planetary nebula with a central star that is currently on the cooling track, due to which the outer parts of the nebula are recombining. From the PACS and SPIRE images we conclude that there is a striking resemblance between the dust distribution and the H2 emission, which appears to be observational evidence that H2 forms on grain surfaces. We have developed a photoionization model of the nebula with the Cloudy code which we used to determine the physical conditions of the dust and investigate possible formation scenarios for the H2. We conclude that the most plausible scenario is that the H2 resides in high density knots which were formed after the recombination of the gas started when the central star entered the cooling track. Hydrodynamical instabilities due to the unusually low temperature of the recombining gas are proposed as a mechanism for forming the knots. H2 formation in the knots is expected to be substantial after the central star underwent a strong drop in luminosity about one to two thousand years ago, and may still be ongoing at this moment, depending on the density of the knots and the properties of the grains in the knots.
Molecular hydrogen is the most abundant molecule in the universe. It is the first one to form and survive photo-dissociation in tenuous environments. Its formation involves catalytic reactions on the surface of interstellar grains. The micro-physics of the formation process has been investigated intensively in the last 20 years, in parallel of new astrophysical observational and modeling progresses. In the perspectives of the probable revolution brought by the future satellite JWST, this article has been written to present what we think we know about the H$_2$ formation in a variety of interstellar environments.
Interstellar grains are known to be important actors in the formation of interstellar molecules such as H$_2$, water, ammonia, and methanol. It has been suggested that the so-called interstellar complex organic molecules (iCOMs) are also formed on the interstellar grain icy surfaces by the combination of radicals via reactions assumed to have an efficiency equal to unity. In this work, we aim to investigate the robustness or weakness of this assumption by considering the case of acetaldehyde (CH$_3$CHO) as a starting study case. In the literature, it has been postulated that acetaldehyde is formed on the icy surfaces via the combination of HCO and CH$_3$. Here we report new theoretical computations on the efficiency of its formation. To this end, we coupled quantum chemical calculations of the energetics and kinetics of the reaction CH$_3$ + HCO, which can lead to the formation of CH$_3$CHO or CO + CH$_4$. Specifically, we combined reaction kinetics computed with the Rice-Ramsperger-Kassel-Marcus (RRKM) theory (tunneling included) method with diffusion and desorption competitive channels. We provide the results of our computations in the format used by astrochemical models to facilitate their exploitation. Our new computations indicate that the efficiency of acetaldehyde formation on the icy surfaces is a complex function of the temperature and, more importantly, of the assumed diffusion over binding energy ratio $f$ of the CH$_3$ radical. If the ratio $f$ is $geq$0.4, the efficiency is equal to unity in the range where the reaction can occur, namely between 12 and 30 K. However, if $f$ is smaller, the efficiency dramatically crashes: with $f$=0.3, it is at most 0.01. In addition, the formation of acetaldehyde is always in competition with that of CO + CH$_4$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا