Do you want to publish a course? Click here

Quasiclassical Asymptotics and Coherent States for Bounded Discrete Spectra

140   0   0.0 ( 0 )
 Added by Katarzyna Gorska
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider discrete spectra of bound states for non-relativistic motion in attractive potentials V_{sigma}(x) = -|V_{0}| |x|^{-sigma}, 0 < sigma leq 2. For these potentials the quasiclassical approximation for n -> infty predicts quantized energy levels e_{sigma}(n) of a bounded spectrum varying as e_{sigma}(n) ~ -n^{-2sigma/(2-sigma)}. We construct collective quantum states using the set of wavefunctions of the discrete spectrum taking into account this asymptotic behaviour. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For sigma in the range 0<sigmaleq 2/3 we present exact implementations of such states for the parametrization sigma = 2(k-l)/(3k-l), with k and l positive integers satisfying k>l.



rate research

Read More

We consider the quantum dynamics of a charged particle evolving under the action of a constant homogeneous magnetic field, with emphasis on the discrete subgroups of the Heisenberg group (in the Euclidean case) and of the SL(2, R) group (in the Hyperbolic case). We investigate completeness properties of discrete coherent states associated with higher order Euclidean and hyperbolic Landau levels, partially extending classic results of Perelomov and of Bargmann, Butera, Girardello and Klauder. In the Euclidean case, our results follow from identifying the completeness problem with known results from the theory of Gabor frames. The results for the hyperbolic setting follow by using a combination of methods from coherent states, time-scale analysis and the theory of Fuchsian groups and their associated automorphic forms.
We describe coherent states and associated generalized Grassmann variables for a system of $m$ independent $q$-boson modes. A resolution of unity in terms of generalized Berezin integrals leads to generalized Grassmann symbolic calculus. Formulae for operator traces are given and the thermodynamic partition function for a system of $q$-boson oscillators is discussed.
In a previous paper [{it J. Phys. A: Math. Theor.} {bf 40} (2007) 11105], we constructed a class of coherent states for a polynomially deformed $su(2)$ algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed $su(1,1)$ algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1,1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1,1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.
123 - J. S. Brauchart , D. P. Hardin , 2009
We derive the complete asymptotic expansion in terms of powers of $N$ for the geodesic $f$-energy of $N$ equally spaced points on a rectifiable simple closed curve $Gamma$ in ${mathbb R}^p$, $pgeq2$, as $N to infty$. For $f$ decreasing and convex, such a point configuration minimizes the $f$-energy $sum_{j eq k}f(d(mathbf{x}_j, mathbf{x}_k))$, where $d$ is the geodesic distance (with respect to $Gamma$) between points on $Gamma$. Completely monotonic functions, analytic kernel functions, Laurent series, and weighted kernel functions $f$ are studied. % Of particular interest are the geodesic Riesz potential $1/d^s$ ($s eq 0$) and the geodesic logarithmic potential $log(1/d)$. By analytic continuation we deduce the expansion for all complex values of $s$.
60 - Brian C. Hall 2017
The first two parts of this article surveys results related to the heat-kernel coherent states for a compact Lie group K. I begin by reviewing the definition of the coherent states, their resolution of the identity, and the associated Segal-Bargmann transform. I then describe related results including connections to geometric quantization and (1+1)-dimensional Yang--Mills theory, the associated coherent states on spheres, and applications to quantum gravity. The third part of this article summarizes recent work of mine with Driver and Kemp on the large-N limit of the Segal--Bargmann transform for the unitary group U(N). A key result is the identification of the leading-order large-N behavior of the Laplacian on trace polynomials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا