Do you want to publish a course? Click here

Integrating Random Matrix Theory Predictions with Short-Time Dynamical Effects in Chaotic Systems

137   0   0.0 ( 0 )
 Added by Lev Kaplan
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss a modification to Random Matrix Theory eigenstate statistics, that systematically takes into account the non-universal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian, instead requiring only a knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard Random Matrix Theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave function autocorrelations and cross-correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.



rate research

Read More

Consider a chaotic dynamical system generating Brownian motion-like diffusion. Consider a second, non-chaotic system in which all particles localize. Let a particle experience a random combination of both systems by sampling between them in time. What type of diffusion is exhibited by this {em random dynamical system}? We show that the resulting dynamics can generate anomalous diffusion, where in contrast to Brownian normal diffusion the mean square displacement of an ensemble of particles increases nonlinearly in time. Randomly mixing simple deterministic walks on the line we find anomalous dynamics characterised by ageing, weak ergodicity breaking, breaking of self-averaging and infinite invariant densities. This result holds for general types of noise and for perturbing nonlinear dynamics in bifurcation scenarios.
Parameter-dependent statistical properties of spectra of totally connected irregular quantum graphs with Neumann boundary conditions are studied. The autocorrelation functions of level velocities c(x) and c(w,x) as well as the distributions of level curvatures and avoided crossing gaps are calculated. The numerical results are compared with the predictions of Random Matrix Theory (RMT) for Gaussian Orthogonal Ensemble (GOE) and for coupled GOE matrices. The application of coupled GOE matrices was justified by studying localization phenomena in graphs wave functions Psi(x) using the Inverse Participation Ratio (IPR) and the amplitude distribution P(Psi(x)).
A new method of virtual unknown parameter is proposed to synchronize two different systems with unknown parameters and disturbance in finite time. Virtual unknown parameters are introduced in order to avoid the unknown parameters from appearing in the controllers and parameters update laws when the adaptive control method is applied. A single virtual unknown parameter is used in the design of adaptive controllers and parameters update laws if the Lipschitz constant on the nonlinear function can be found, while multiple virtual unknown parameters are adopted if the Lipschitz constant cannot be determined. Numerical simulations show that the present method does make the two different chaotic systems synchronize in finite time.
We present a general approach to the classical dynamical systems simulation. This approach is based on classical systems extension to quantum states. The proposed theory can be applied to analysis of multiple (including non-Hamiltonian) dissipative dynamical systems. As examples, we consider the logistic model, the Van der Pol oscillator, dynamical systems of Lorenz, Rossler (including Rossler hyperchaos) and Rabinovich-Fabrikant. Developed methods and algorithms integrated in quantum simulators will allow us to solve a wide range of problems with scientific and practical significance.
172 - M.V. Budyansky , M.Yu. Uleysky , 2012
We continue our study of chaotic mixing and transport of passive particles in a simple model of a meandering jet flow [Prants, et al, Chaos {bf 16}, 033117 (2006)]. In the present paper we study and explain phenomenologically a connection between dynamical, topological, and statistical properties of chaotic mixing and transport in the model flow in terms of dynamical traps, singular zones in the phase space where particles may spend arbitrary long but finite time [Zaslavsky, Phys. D {bf 168--169}, 292 (2002)]. The transport of passive particles is described in terms of lengths and durations of zonal flights which are events between two successive changes of sign of zonal velocity. Some peculiarities of the respective probability density functions for short flights are proven to be caused by the so-called rotational-islands traps connected with the boundaries of resonant islands (including those of the vortex cores) filled with the particles moving in the same frame. Whereas, the statistics of long flights can be explained by the influence of the so-called ballistic-islands traps filled with the particles moving from a frame to frame.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا