Do you want to publish a course? Click here

Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

247   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.

rate research

Read More

209 - Samuel Tardif 2008
While achieving high Curie temperatures (above room temperature) in diluted magnetic semiconductors remains a challenge in the case of well controlled homogeneous alloys, several systems characterized by a strongly inhomogeneous incorporation of the magnetic component appear as promising. Incorporation of manganese into germanium drastically alters the growth conditions, and in certain conditions of low temperature Molecular Beam Epitaxy it leads to the formation of well organized nanocolumns of a Mn-rich material, with a crystalline structure in epitaxial relationship with the Mn-poor germanium matrix. A strong interaction between the Mn atoms in these nanocolums is demonstrated by x-ray absorption spectroscopy, giving rise to a ferromagnetic character as observed through magnetometry and x-ray magnetic circular dichroism. Most interesting, intense magneto-transport features are observed on the whole structure, which strongly depend on the magnetic configuration of the nanocolumns.
Normal incidence 1 keV Ar$^+$ ion bombardment leads to amorphization and ultrasmoothing of Ge at room temperature, but at elevated temperatures the Ge surface remains crystalline and is unstable to the formation of self-organized nanoscale patterns of ordered pyramid-shaped pits. The physical phenomenon distinguishing the high temperature patterning from room temperature ultrasmoothing is believed to be a surface instability due to the Ehrlich-Schwoebel barrier for diffusing vacancies and adatoms, which is not present on the amorphous material. This real-time GISAXS study compares smoothing of a pre-patterned Ge sample at room temperature with patterning of an initially flat Ge sample at an elevated temperature. In both experiments, when the nanoscale structures are relatively small in height, the average kinetics can be explained by a linear theory. The linear theory coefficients, indicating surface stability or instability, were extracted for both experiments. A comparison between the two measurements allows estimation of the contribution of the Ehrlich-Schwoebel barrier to the self-organized formation of ordered nanoscale patterns on crystalline Ge surfaces.
162 - J. Schaefer 2009
Atomic structures of quasi-one-dimensional (1D) character can be grown on semiconductor substrates by metal adsorption. Significant progress concerning study of their 1D character has been achieved recently by condensing noble metal atoms on the Ge(001) surface. In particular, Pt and Au yield high quality reconstructions with low defect densities. We reported on the self-organized growth and the long-range order achieved, and present data from scanning tunneling microscopy (STM) on the structural components. For Pt/Ge(001), we find hot substrate growth is the preferred method for self-organization. Despite various dimerized bonds, these atomic wires exhibit metallic conduction at room temperature, as documented by low-bias STM. For the recently discovered Au/Ge(001) nanowires, we have developed a deposition technique that allows complete substrate coverage. The Au nanowires are extremely well separated spatially, exhibit a continuous 1D charge density, and are of solid metallic conductance. In this review we present structural details for both types of nanowires, and discuss similarities and differences. A perspective is given for their potential to host a one-dimensional electron system. The ability to condense different noble metal nanowires demonstrates how atomic control of the structure affects the electronic properties.
In this study we numerically calculate the spatial profile of mechanical strain on self-assembled germanium (Ge) quantum dots (QDs) grown on a silicon (Si) substrate. Although the topic has been exhaustively studied, interesting features have not been explained or even mentioned in the literature yet. We studied the effect of the cap layer considering two cases: capped QDs (where a Si cap is present above the Ge QDs) and uncapped QDs (where no Si is present above the Ge QDs). We observed that Ge in the capped QDs is more strained compared with the the uncapped QDs. This expected effect is attributed to the additional tension from the Si cap layer. However, the situation is opposite for the Si substrate, it is more strained in the uncapped QD because the Ge layer is less strained in this case. We also calculated the band-edge alignment for the electrons and holes.
Ge_(1-x)Sn_x alloys have proved difficult to form at large x, contrary to what happens with other group IV semiconductor combinations. However, at low x they are typical examples of well-behaved substitutional compounds, which is desirable for harnessing the electronic properties of narrow band semiconductors. In this paper, we propose the appearance of another kind of single-site defect ($beta-Sn$), consisting of a single Sn atom in the center of a Ge divacancy, that may account for these facts. Accordingly, we examine the electronic and structural properties of these alloys by performing extensive numerical ab-initio calculations around local defects. The results show that the environment of the $beta$ defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of metallic white tin and its segregation, as found in amorphous samples. Using the information stemming from these local defect calculations, we built a simple statistical model to investigate at which concentration these $beta$ defects can be formed in thermal equilibrium. These results agree remarkably well with experimental findings, concerning the critical concentration above which the homogeneous alloys cannot be formed at room temperature. Our model also predicts the observed fact that at lower temperature the critical concentration increases. We also performed single site effective-field calculations of the electronic structure, which further support our hypothesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا