Do you want to publish a course? Click here

From stochastic single atomic switch to nanoscale resistive memory device

423   0   0.0 ( 0 )
 Added by Attila Geresdi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solid state ionic conductors are good candidates for the next generation of nonvolatile computer memory elements. Such devices have to show reproducible resistance switching at reasonable voltage and current values even if scaled down to the nanometer sizes. Here we study the switching characteristics of nanoscale junctions created between a tungsten tip and a silver film covered by a thin ionic conductor layer. Atomic-sized junctions show spectacular current induced switching characteristics, but both the magnitude of the switching voltage and the direction of the switching vary randomly for different junctions. In contrast, for somewhat larger junctions with diameters of a few nanometers a well defined, reproducible switching behavior is observed which is associated with the formation and destruction of nanoscale channels in the ionic conductor surface layer. Our results define a low size limit of 3 nm for reliable ionic nano-switches, which is well below the resolution of recent lithographic techniques.



rate research

Read More

As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.
This paper presents a novel resistive-only Binary and Ternary Content Addressable Memory (B/TCAM) cell that consists of two Complementary Resistive Switches (CRSs). The operation of such a cell relies on a logic$rightarrow$ON state transition that enables this novel CRS application.
Quantum dots exhibit reproducible conductance fluctuations at low temperatures due to electron quantum interference. The sensitivity of these fluctuations to the underlying disorder potential has only recently been fully realized. We exploit this sensitivity to obtain a novel tool for better understanding the role that background impurities play in the electrical properties of high-mobility AlGaAs/GaAs heterostructures and nanoscale devices. In particular, we report the remarkable ability to first alter the disorder potential in an undoped AlGaAs/GaAs heterostructure by optical illumination and then reset it back to its initial configuration by room temperature thermal cycling in the dark. We attribute this behavior to a mixture of C background impurities acting as shallow acceptors and deep trapping by Si impurities. This alter and reset capability, not possible in modulation-doped heterostructures, offers an exciting route to studying how scattering from even small densities of charged impurities influences the properties of nanoscale semiconductor devices.
Embedded non-volatile memory technologies such as resistive random access memory (RRAM) and spin-transfer torque magnetic RAM (STT MRAM) are increasingly being researched for application in neuromorphic computing and hardware accelerators for AI. However, the stochastic write processes in these memory technologies affect their yield and need to be studied alongside process variations, which drastically increase the complexity of yield analysis using the Monte Carlo approach. Therefore, we propose an approach based on the Fokker-Planck equation for modeling the stochastic write processes in STT MRAM and RRAM devices. Moreover, we show that our proposed approach can reproduce the experimental results for both STT-MRAM and RRAM devices.
The coupling of the spin and the motion of charge carriers stems directly from the atomic structure of a conductor. It has become an important ingredient for the emergence of topological matter, and, in particular, topological superconductivity which could host non-abelian excitations such as Majorana modes or parafermions. These modes are sought after mostly in semiconducting platforms which are made of heavy atoms and therefore exhibit naturally a large spin-orbit interaction. Creating domain walls in the spin orbit interaction at the nanoscale may turn out to be a crucial resource for engineering topological excitations suitable for universal topological quantum computing. For example, it has been proposed for exploring exotic electronic states or for creating hinge states. Realizing this in natural platforms remains a challenge. In this work, we show how this can be alternatively implemented by using a synthetic spin orbit interaction induced by two lithographically patterned magnetically textured gates. By using a double quantum dot in a light material -- a carbon nanotube -- embedded in a microwave cavity, we trigger hopping between two adjacent orbitals with the microwave photons and directly compare the wave functions separated by the domain wall via the light-matter coupling. We show that we can achieve an engineered staggered spin-orbit interaction with a change of strength larger than the hopping energy between the two sites.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا