No Arabic abstract
Recent work based on a global measurement of the ICM properties find evidence for an increase of the iron abundance in galaxy clusters with temperature around 2-4 keV up to a value about 3 times larger than that typical of very hot clusters. We have started a study of the metal distribution in these objects from the sample of Baumgartner et al. (2005), aiming at resolving spatially the metal content of the ICM. We report here on a 42ks XMM observation of the first object of the sample, the cluster Abell 2028. The XMM observation reveals a complex structure of the cluster over scale of 300 kpc, showing an interaction between two sub-clusters in cometary-like configurations. At the leading edges of the two substructures cold fronts have been detected. The core of the main subcluster is likely hosting a cool corona. We show that a one-component fit for this region returns a biased high metallicity. This inverse iron bias is due to the behavior of the fitting code in shaping the Fe-L complex. In presence of a multi-temperature structure of the ICM, the best-fit metallicity is artificially higher when the projected spectrum is modeled with a single temperature component and it is not related to the presence of both Fe-L and Fe-K emission lines in the spectrum. After accounting for the bias, the overall abundance of the cluster is consistent with the one typical of hotter, more massive clusters. We caution the interpretation of high abundances inferred when fitting a single thermal component to spectra derived from relatively large apertures in 3-4 keV clusters, because the inverse iron bias can be present. Most of the inferences trying to relate high abundances in 3-4 keV clusters to fundamental physical processes will likely have to be revised.
Recent work based on a global measurement of the ICM properties find evidence for an increase of the iron abundance in galaxy clusters with temperature around 2-4 keV. We have undertaken a study of the metal distribution in nearby clusters in this temperature range, aiming at resolving spatially the metal content of the ICM. The XMM observation of the first object of the sample, the cluster Abell 2028, reveals a complex structure of the cluster over scale of ~ 300 kpc, showing an interaction between two sub-clusters in a ``cometary configuration. We show that a naive one-component fit for the core of Abell 2028 returns a biased high metallicity. This is due to the inverse iron-bias, which is not related to the presence in the spectrum of both Fe-L and Fe-K emission lines but to the behavior of the fitting code in shaping the Fe-L complex of a one temperature component to adjust to the multi-temperature structure of the projected spectrum.
A number of radio observations have revealed the presence of large synchrotron-emitting sources associated with the intra-cluster medium. There is strong observational evidence that the emitting particles have been (re-)accelerated by shocks and turbulence generated during merger events. The particles that are accelerated are thought to have higher initial energies than those in the thermal pool but the origin of such mildly relativistic particles remains uncertain and needs to be further investigated. The galaxy cluster Abell 1914 is a massive galaxy cluster in which X-ray observations show clear evidence of merging activity. We carried out radio observations of this cluster with the LOw Frequency ARay (LOFAR) at 150 MHz and the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. We also analysed Very Large Array (VLA) 1.4 GHz data, archival GMRT 325 MHz data, CFHT weak lensing data and Chandra observations. Our analysis shows that the ultra-steep spectrum source (4C38.39; $alpha lesssim -2$), previously thought to be part of a radio halo, is a distinct source with properties that are consistent with revived fossil plasma sources. Finally, we detect some diffuse emission to the west of the source 4C38.39 that could belong to a radio halo.
We present a new Chandra observation of the galaxy cluster Abell 2146 which has revealed a complex merging system with a gas structure that is remarkably similar to the Bullet cluster (eg. Markevitch et al. 2002). The X-ray image and temperature map show a cool 2-3 keV subcluster with a ram pressure stripped tail of gas just exiting the disrupted 6-7 keV primary cluster. From the sharp jump in the temperature and density of the gas, we determine that the subcluster is preceded by a bow shock with a Mach number M=2.2+/-0.8, corresponding to a velocity v=2200^{+1000}_{-900} km/s relative to the main cluster. We estimate that the subcluster passed through the primary core only 0.1-0.3 Gyr ago. In addition, we observe a slower upstream shock propagating through the outer region of the primary cluster and calculate a Mach number M=1.7+/-0.3. Based on the measured shock Mach numbers M~2 and the strength of the upstream shock, we argue that the mass ratio between the two merging clusters is between 3 and 4 to one. By comparing the Chandra observation with an archival HST observation, we find that a group of galaxies is located in front of the X-ray subcluster core but the brightest cluster galaxy is located immediately behind the X-ray peak.
Deep radio observations of the galaxy cluster Abell 781 have been carried out using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio emission from the cluster is dominated by a diffuse source located at the outskirts of the X-ray emission, which we tentatively classify as a radio relic. We detected residual diffuse emission at the cluster centre at the level of S(325 MHz)~15-20 mJy. Our analysis disagrees with Govoni et al. (2011), and on the basis of simple spectral considerations we do not support their claim of a radio halo with flux density of 20-30 mJy at 1.4 GHz. Abell 781, a massive and merging cluster, is an intriguing case. Assuming that the residual emission is indicative of the presence of a radio halo barely detectable at our sensitivity level, it could be a very steep spectrum source.
We present XMM-Newton/EPIC observations of six merging galaxy clusters and study the distributions of their temperature, iron (Fe) abundance and pseudo-entropy along the merging axis. For the first time, we focus simultaneously, and in a comprehensive way, on the chemical and thermodynamic properties of the freshly collided intracluster medium (ICM). The Fe distribution of these clusters along the merging axis is found to be in good agreement with the azimuthally-averaged Fe abundance profile in typical non-cool-core clusters out to $r_{500}$. In addition to showing a moderate central abundance peak, though less pronounced than in relaxed systems, the Fe abundance flattens at large radii towards $sim$0.2-0.3 $Z_odot$. Although this shallow metal distribution is in line with the idea that disturbed, non-cool-core clusters originate from the merging of relaxed, cool-core clusters, we find that in some cases, remnants of metal-rich and low entropy cool cores can persist after major mergers. While we obtain a mild anti-correlation between the Fe abundance and the pseudo-entropy in the (lower entropy, $K$ = 200-500 keV cm$^2$) inner regions, no clear correlation is found at (higher entropy, $K$ = 500-2300 keV cm$^2$) outer radii. The apparent spatial abundance uniformity that we find at large radii is difficult to explain through an efficient mixing of freshly injected metals, particularly in systems for which the time since the merger is short. Instead, our results provide important additional evidence in favour of the early enrichment scenario - in which the bulk of the metals are released outside galaxies at $z$ > 2-3 - and extend it from cool-core and (moderate) non-cool-core clusters to a few of the most disturbed merging clusters as well. These results constitute a first step towards a deeper understanding of the chemical history of merging clusters.