Do you want to publish a course? Click here

Iron abundance distribution in the hot gas of merging galaxy clusters

112   0   0.0 ( 0 )
 Added by Igone Urdampilleta
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present XMM-Newton/EPIC observations of six merging galaxy clusters and study the distributions of their temperature, iron (Fe) abundance and pseudo-entropy along the merging axis. For the first time, we focus simultaneously, and in a comprehensive way, on the chemical and thermodynamic properties of the freshly collided intracluster medium (ICM). The Fe distribution of these clusters along the merging axis is found to be in good agreement with the azimuthally-averaged Fe abundance profile in typical non-cool-core clusters out to $r_{500}$. In addition to showing a moderate central abundance peak, though less pronounced than in relaxed systems, the Fe abundance flattens at large radii towards $sim$0.2-0.3 $Z_odot$. Although this shallow metal distribution is in line with the idea that disturbed, non-cool-core clusters originate from the merging of relaxed, cool-core clusters, we find that in some cases, remnants of metal-rich and low entropy cool cores can persist after major mergers. While we obtain a mild anti-correlation between the Fe abundance and the pseudo-entropy in the (lower entropy, $K$ = 200-500 keV cm$^2$) inner regions, no clear correlation is found at (higher entropy, $K$ = 500-2300 keV cm$^2$) outer radii. The apparent spatial abundance uniformity that we find at large radii is difficult to explain through an efficient mixing of freshly injected metals, particularly in systems for which the time since the merger is short. Instead, our results provide important additional evidence in favour of the early enrichment scenario - in which the bulk of the metals are released outside galaxies at $z$ > 2-3 - and extend it from cool-core and (moderate) non-cool-core clusters to a few of the most disturbed merging clusters as well. These results constitute a first step towards a deeper understanding of the chemical history of merging clusters.



rate research

Read More

The investigation of radio relic merging galaxy clusters is strengthening our understanding of the formation and evolution of galaxy clusters, the nature of dark matter, the intracluster medium, and astrophysical particle acceleration. Each merging cluster provides only a single view of the cluster formation process and the variety of merging clusters is vast. Clusters hosting double radio relics are rare and extremely important because they allow tight constraints on the merger scenario. We present a weak-lensing and X-ray analysis of MACSJ1752.0+4440 (z=0.365) and ZWCL1856.8+6616 (z=0.304), two double radio relic merging galaxy clusters. Our weak-lensing mass estimates show that each cluster is a major merger with approximately 1:1 mass ratio. The total mass of MACSJ1752.0+4440 (ZWCL1856.8+6616) is $M_{200}=14.7^{+3.8}_{-3.3}times10^{14} $M$_odot$ ($M_{200}=2.4^{+0.9}_{-0.7}times10^{14} $M$_odot$). We find that these two clusters have comparable features in their weak-lensing and gas distributions, even though the systems have vastly different total masses. From the likeness of the X-ray morphologies and the remarkable symmetry of the radio relics, we propose that both systems underwent nearly head-on collisions. However, revelations from the hot-gas features and our multiwavelength data analysis suggest that ZWCL1856.8+6618 is likely at a later merger phase than MACSJ1752.0+4440. We postulate that the SW radio relic in MACSJ1752.0+4440 is a result of particle re-acceleration.
We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.
We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zeldovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z=1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster center and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping ($sqrt C_{rho}sim 1.2$ at $R_{200}$) in good agreement with recent observational estimates. The simulated $Y_{SZ}-M$ scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.
164 - D. Eckert , F. Vazza , S. Ettori 2011
We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond sim r500. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond sim 0.3r200, which we explain by a different distribution of the gas in the two classes. Beyond sim r500, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. [Abridged]
In this work we explore the new catalog of galactic open clusters that became available recently, containing 1750 clusters that have been re-analysed using the Gaia DR2 catalog to determine the stellar memberships. We used the young open clusters as tracers of spiral arms and determined the spiral pattern rotation speed of the Galaxy and the corotation radius, the strongest Galactic resonance. The sample of open clusters used here increases the last one from Dias et al. (2019) used in the previous determination of the pattern speed by dozens objects. In addition, the distances and ages values are better determined, using improvements to isochrone fitting and including an updated extinction polynomial for the Gaia DR2 photometric band-passes, and the Galactic abundance gradient as a prior for metallicity. In addition to the better age determinations, the catalog contains better positions in the Galactic plane and better proper motions. This allow us to discuss not only the present space distribution of the clusters, but also the space distribution of the clusterss birthplaces, obtained by integration of the orbits for a time equal to their age. The value of the rotation velocity of the arms ($28.5 pm 1.0$ km s$^{-1}$ kpc$^{-1}$) implies that the corotation radius ($R_c$) is close to the solar Galactic orbit ($R_c/R_0 = 1.01pm0.08$), which is supported by other observational evidence discussed in this text. A simulation is presented, illustrating the motion of the clusters in the reference frame of corotation. We also present general statistics of the catalog of clusters, like spatial distribution, distribution relative to height from the Galactic plane, and distribution of ages and metallicity. An important feature of the space distribution, the corotation gap in the gas distribution and its consequences for the young clusters, is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا