No Arabic abstract
We have recently interpreted the source MAGIC J0616+225 as a result of delayed TeV emission of cosmic-rays diffusing from IC 443 and interacting with a cloud in the foreground of the remnant. This model was used to make predictions for future observations, especially those to be made with the Fermi satellite. Just recently, AGILE, Fermi, and VERITAS have released new results of their observations of IC 443. In this work, we compare them with the predictions of our model, exploring the GeV to TeV connection in this region of space. We use Fermi data to consider the possibility of constraining the cosmic-ray diffusion features of the environment. We analyze the cosmic-ray distributions, their interactions, and a possible detection of the SNR environment in the neutrino channel.
Fermi-LAT spectra at high energies (HE, 0.1-100 GeV) are often extrapolated to very high energies (VHE, >100 GeV) and considered either a good estimate or an upper limit for the blazars intrinsic VHE spectrum. This assumption seems not well justified, neither theoretically nor observationally. Besides being often softer, observations do indicate that spectra at VHE could be also harder than at HE, even when adopting the limit of Gamma=1.5. Results based on such straightforward GeV-TeV extrapolations are in general not reliable, and should be considered with caution.
Context: We investigate non-Zeeman circular polarization and linear polarization levels of up to 1% of $^{12}$CO spectral line emission detected in a shocked molecular clump around the supernova remnant (SNR) IC 443, with the goal of understanding the magnetic field structure in this source. Aims: We examine our polarization results to confirm that the circular polarization signal in CO lines is caused by a conversion of linear to circular polarization, consistent with anisotropic resonant scattering. In this process background linearly polarized CO emission interacts with similar foreground molecules aligned with the ambient magnetic field and scatters at a transition frequency. The difference in phase shift between the orthogonally polarized components of this scattered emission can cause a transformation of linear to circular polarization. Methods: We compared linear polarization maps from dust continuum, obtained with PolKa at APEX, and $^{12}$CO ($J=2rightarrow1$) and ($J=1rightarrow0$) from the IRAM 30-m telescope and found no consistency between the two sets of polarization maps. We then reinserted the measured circular polarization signal in the CO lines across the source to the corresponding linear polarization signal to test whether before this linear to circular polarization conversion the linear polarization vectors of the CO maps were aligned with those of the dust. Results: After the flux correction for the two transitions of the CO spectral lines, the new polarization vectors for both CO transitions aligned with the dust polarization vectors, establishing that the non-Zeeman CO circular polarization is due to a linear to circular polarization conversion.
Most of young and middle-aged supernova remnants (SNRs) exhibit an ionizing plasma (IP), an ionizing process following a shock heated SNR gas. On the other hand, significant fractions of SNRs exhibit a recombining plasma (RP). The origin and the mechanisms of the RP, however, are not yet well understood. This paper proposes a new model that the RP is followed after the IP process taken at the first epoch of the SNR evolution. Using the high quality and wide band (0.6-10 keV) spectrum of IC 443, we nicely fitted with a model of two RP (two-RP model) plus a power law (PL) with an Fe I Kalpha line component. The ionization temperature in one RP monotonously increases from Ne-Ca, while that in the other RP shows a drastic increase from Cr-Ni. Origin and mechanism of the two-RP and PL with an Fe I Kalpha line components are possibly due to a different evolution of two plasmas and ionization by the low-energy cosmic ray.
Context. Diffusive shock acceleration (DSA) is the most promising mechanism to accelerate Galactic cosmic rays (CRs) in the shocks of supernova remnants (SNRs). The turbulence upstream is supposedly generated by the CRs, but this process is not well understood. The dominant mechanism may depend on the evolutionary state of the shock and can be studied via the CRs escaping upstream into the interstellar medium (ISM). Aims. Previous observations of the $gamma$-Cygni SNR showed a difference in morphology between GeV and TeV energies. Since this SNR has the right age and is at the evolutionary stage for a significant fraction of CRs to escape, we aim to understand $gamma$-ray emission in the vicinity of the $gamma$-Cygni SNR. Methods. We observed the region of the $gamma$-Cygni SNR with the MAGIC Imaging Atmospheric Cherenkov telescopes between May 2015 and September 2017 recording 87 h of good-quality data. Additionally we analysed Fermi-LAT data to study the energy dependence of the morphology as well as the energy spectrum in the GeV to TeV range. The energy spectra and morphology were compared against theoretical predictions, which include a detailed derivation of the CR escape process and their $gamma$-ray generation. Results. The MAGIC and Fermi-LAT data allowed us to identify three emission regions, which can be associated with the SNR and dominate at different energies. Our hadronic emission model accounts well for the morphology and energy spectrum of all source components. It constrains the time-dependence of the maximum energy of the CRs at the shock, the time-dependence of the level of turbulence, and the diffusion coefficient immediately outside the SNR shock. While in agreement with the standard picture of DSA, the time-dependence of the maximum energy was found to be steeper than predicted and the level of turbulence was found to change over the lifetime of the SNR.
The Fermi-LAT revealed that the census of the gamma-ray sky is dominated by blazars. Looking for a possible connection between radio and gamma-ray emission is a central issue for understanding the blazar physics, and various works were dedicated to this topic. However, while a strong and significant correlation was found between radio and gamma-ray emission in the 0.1-100 GeV energy range, the connection between radio and very high energy (VHE, E>0.1 TeV) emission is still elusive. The main reason is the lack of a homogeneous VHE sky coverage, due to the operational mode of the imaging atmospheric Cherenkov telescopes. With the present work we aim to quantify and assess the significance of the possible connection between high-resolution radio emission, on milliarcsecond scale, and GeV-TeV gamma-ray emission in blazars. For achieving our goal we extract two large and unbiased blazar samples from the 1FHL and 2FHL Fermi catalogs, above 10 GeV and 50 GeV, respectively. To investigate how the correlation evolves as the gamma-ray energy increases, we perform the same analysis by using the 0.1-300 GeV 3FGL gamma-ray energy fluxes. When we consider the 0.1-300 GeV gamma-ray energy range, we find a strong and significant correlation for all of the blazar sub-classes. Conversely, when we consider the gamma-ray emission above 10 GeV the correlation with the radio emission vanishes, with the exception of the blazar sub-class of high synchrotron peaked objects.