Do you want to publish a course? Click here

Nonperturbative QED Effective Action at Finite Temperature

581   0   0.0 ( 0 )
 Added by Sang Pyo Kim
 Publication date 2010
  fields Physics
and research's language is English
 Authors Sang Pyo Kim




Ask ChatGPT about the research

We advance a novel method for the finite-temperature effective action for nonequilibrium quantum fields and find the QED effective action in time-dependent electric fields, where charged pairs evolve out of equilibrium. The imaginary part of the effective action consists of thermal loops of the Fermi-Dirac or Bose-Einstein distribution for the initial thermal ensemble weighted with factors for vacuum fluctuations. And the real part of the effective action is determined by the mean number of produced pairs, vacuum polarization, and thermal distribution. The mean number of produced pairs is equal to twice the imaginary part. We explicitly find the finite-temperature effective action in a constant electric field.



rate research

Read More

250 - Sang Pyo Kim 2009
We find the Bogoliubov coefficient from the tunneling boundary condition on a charged particle coupled to a static electric field $E_0 sech^2 (z/L)$ and, using the regularization scheme in Phys. Rev. D 78, 105013 (2008), obtain the exact one-loop effective action in scalar and spinor QED. It is shown that the effective action satisfies the general relation between the vacuum persistence and the mean number of produced pairs. We advance an approximation method for general electric fields and show the duality between the space-dependent and time-dependent electric fields of the same form at the leading order of the effective actions.
136 - Sang Pyo Kim , Hyun Kyu Lee , 2009
We use the evolution operator method to find the Schwinger pair-production rate at finite temperature in scalar and spinor QED by counting the vacuum production, the induced production and the stimulated annihilation from the initial ensemble. It is shown that the pair-production rate for each state is factorized into the mean number at zero temperature and the initial thermal distribution for bosons and fermions.
Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential, $mu$, induced by a magnetic flux running along the axis of an idealized cosmic string. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. Specifically the charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current and it is an odd periodic function of the magnetic flux and an even function of the chemical potential. Both analyzed are developed for the cases where $|mu |$ is smaller than the mass of the field quanta, $m$.
The quantum effective action yields equations of motion and correlation functions including all quantum corrections. We discuss here how it encodes also Noether currents at the full quantum level. This holds both for covariantly conserved currents associated to real symmetries that leave the action invariant as well as for non-conserved Noether currents associated to extended symmetry transformations which change the action, but in a specific way. We discuss then in particular symmetries and extended symmetries associated to space-time geometry for relativistic quantum field theories. These encompass local dilatations or Weyl gauge transformation, local Lorentz transformations and local shear transformations. Together they constitute the symmetry group of the frame bundle GL$(d)$. The corresponding non-conserved Noether currents are the dilatation or Weyl current, the spin current and the shear current for which divergence-type equations of motion are obtained from the quantum effective action.
The one-loop effective potential for gauge models in static de Sitter space at finite temperatures is computed by means of the $zeta$--function method. We found a simple relation which links the effective potentials of gauge and scalar fields at all temperatures. In the de Sitter invariant and zero-temperature states the potential for the scalar electrodynamics is explicitly obtained, and its properties in these two vacua are compared. In this theory the two states are shown to behave similarly in the regimes of very large and very small radii a of the background space. For the gauge symmetry broken in the flat limit ($a to infty$) there is a critical value of a for which the symmetry is restored in both quantum states. Moreover, the phase transitions which occur at large or at small a are of the first or of the second order, respectively, regardless the vacuum considered. The analytical and numerical analysis of the critical parameters of the above theory is performed. We also established a class of models for which the kind of phase transition occurring depends on the choice of the vacuum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا