No Arabic abstract
The mutual fund industry manages about a quarter of the assets in the U.S. stock market and thus plays an important role in the U.S. economy. The question of how much control is concentrated in the hands of the largest players is best quantitatively discussed in terms of the tail behavior of the mutual fund size distribution. We study the distribution empirically and show that the tail is much better described by a log-normal than a power law, indicating less concentration than, for example, personal income. The results are highly statistically significant and are consistent across fifteen years. This contradicts a recent theory concerning the origin of the power law tails of the trading volume distribution. Based on the analysis in a companion paper, the log-normality is to be expected, and indicates that the distribution of mutual funds remains perpetually out of equilibrium.
Is the large influence that mutual funds assert on the U.S. financial system spread across many funds, or is it is concentrated in only a few? We argue that the dominant economic factor that determines this is market efficiency, which dictates that fund performance is size independent and fund growth is essentially random. The random process is characterized by entry, exit and growth. We present a new time-dependent solution for the standard equations used in the industrial organization literature and show that relaxation to the steady-state solution is extremely slow. Thus, even if these processes were stationary (which they are not), the steady-state solution, which is a very heavy-tailed power law, is not relevant. The distribution is instead well-approximated by a less heavy-tailed log-normal. We perform an empirical analysis of the growth of mutual funds, propose a new, more accurate size-dependent model, and show that it makes a good prediction of the empirically observed size distribution. While mutual funds are in many respects like other firms, market efficiency introduces effects that make their growth process distinctly different. Our work shows that a simple model based on market efficiency provides a good explanation of the concentration of assets, suggesting that other effects, such as transaction costs or the behavioral aspects of investor choice, play a smaller role.
Financial speculators often seek to increase their potential gains with leverage. Debt is a popular form of leverage, and with over 39.88B USD of total value locked (TVL), the Decentralized Finance (DeFi) lending markets are thriving. Debts, however, entail the risks of liquidation, the process of selling the debt collateral at a discount to liquidators. Nevertheless, few quantitative insights are known about the existing liquidation mechanisms. In this paper, to the best of our knowledge, we are the first to study the breadth of the borrowing and lending markets of the Ethereum DeFi ecosystem. We focus on Aave, Compound, MakerDAO, and dYdX, which collectively represent over 85% of the lending market on Ethereum. Given extensive liquidation data measurements and insights, we systematize the prevalent liquidation mechanisms and are the first to provide a methodology to compare them objectively. We find that the existing liquidation designs well incentivize liquidators but sell excessive amounts of discounted collateral at the borrowers expenses. We measure various risks that liquidation participants are exposed to and quantify the instabilities of existing lending protocols. Moreover, we propose an optimal strategy that allows liquidators to increase their liquidation profit, which may aggravate the loss of borrowers.
The aim of this study is to investigate quantitatively whether share prices deviated from company fundamentals in the stock market crash of 2008. For this purpose, we use a large database containing the balance sheets and share prices of 7,796 worldwide companies for the period 2004 through 2013. We develop a panel regression model using three financial indicators--dividends per share, cash flow per share, and book value per share--as explanatory variables for share price. We then estimate individual company fundamentals for each year by removing the time fixed effects from the two-way fixed effects model, which we identified as the best of the panel regression models. One merit of our model is that we are able to extract unobservable factors of company fundamentals by using the individual fixed effects. Based on these results, we analyze the market anomaly quantitatively using the divergence rate--the rate of the deviation of share price from a companys fundamentals. We find that share prices on average were overvalued in the period from 2005 to 2007, and were undervalued significantly in 2008, when the global financial crisis occurred. Share prices were equivalent to the fundamentals on average in the subsequent period. Our empirical results clearly demonstrate that the worldwide stock market fluctuated excessively in the time period before and just after the global financial crisis of 2008.
We develop a behavioral model for liquidity and volatility based on empirical regularities in trading order flow in the London Stock Exchange. This can be viewed as a very simple agent based model in which all components of the model are validated against real data. Our empirical studies of order flow uncover several interesting regularities in the way trading orders are placed and cancelled. The resulting simple model of order flow is used to simulate price formation under a continuous double auction, and the statistical properties of the resulting simulated sequence of prices are compared to those of real data. The model is constructed using one stock (AZN) and tested on 24 other stocks. For low volatility, small tick size stocks (called Group I) the predictions are very good, but for stocks outside Group I they are not good. For Group I, the model predicts the correct magnitude and functional form of the distribution of the volatility and the bid-ask spread, without adjusting any parameters based on prices. This suggests that at least for Group I stocks, the volatility and heavy tails of prices are related to market microstructure effects, and supports the hypothesis that, at least on short time scales, the large fluctuations of absolute returns are well described by a power law with an exponent that varies from stock to stock.
We present an analysis of the credit market of Japan. The analysis is performed by investigating the bipartite network of banks and firms which is obtained by setting a link between a bank and a firm when a credit relationship is present in a given time window. In our investigation we focus on a community detection algorithm which is identifying communities composed by both banks and firms. We show that the clusters obtained by directly working on the bipartite network carry information about the networked nature of the Japanese credit market. Our analysis is performed for each calendar year during the time period from 1980 to 2011. Specifically, we obtain communities of banks and networks for each of the 32 investigated years, and we introduce a method to track the time evolution of these communities on a statistical basis. We then characterize communities by detecting the simultaneous over-expression of attributes of firms and banks. Specifically, we consider as attributes the economic sector and the geographical location of firms and the type of banks. In our 32 year long analysis we detect a persistence of the over-expression of attributes of clusters of banks and firms together with a slow dynamics of changes from some specific attributes to new ones. Our empirical observations show that the credit market in Japan is a networked market where the type of banks, geographical location of firms and banks and economic sector of the firm play a role in shaping the credit relationships between banks and firms.