No Arabic abstract
We develop a behavioral model for liquidity and volatility based on empirical regularities in trading order flow in the London Stock Exchange. This can be viewed as a very simple agent based model in which all components of the model are validated against real data. Our empirical studies of order flow uncover several interesting regularities in the way trading orders are placed and cancelled. The resulting simple model of order flow is used to simulate price formation under a continuous double auction, and the statistical properties of the resulting simulated sequence of prices are compared to those of real data. The model is constructed using one stock (AZN) and tested on 24 other stocks. For low volatility, small tick size stocks (called Group I) the predictions are very good, but for stocks outside Group I they are not good. For Group I, the model predicts the correct magnitude and functional form of the distribution of the volatility and the bid-ask spread, without adjusting any parameters based on prices. This suggests that at least for Group I stocks, the volatility and heavy tails of prices are related to market microstructure effects, and supports the hypothesis that, at least on short time scales, the large fluctuations of absolute returns are well described by a power law with an exponent that varies from stock to stock.
Long memory and volatility clustering are two stylized facts frequently related to financial markets. Traditionally, these phenomena have been studied based on conditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH, inter alia. One advantage of these models is their ability to capture nonlinear dynamics. Another interesting manner to study the volatility phenomena is by using measures based on the concept of entropy. In this paper we investigate the long memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 indexes in order to compare the US and European Markets. Additionally, we compare the results from conditionally heteroscedastic models with those from the entropy measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis entropy. The results corroborate the previous evidence of nonlinear dynamics in the time series considered.
One of the major issues studied in finance that has always intrigued, both scholars and practitioners, and to which no unified theory has yet been discovered, is the reason why prices move over time. Since there are several well-known traditional techniques in the literature to measure stock market volatility, a central point in this debate that constitutes the actual scope of this paper is to compare this common approach in which we discuss such popular techniques as the standard deviation and an innovative methodology based on Econophysics. In our study, we use the concept of Tsallis entropy to capture the nature of volatility. More precisely, what we want to find out is if Tsallis entropy is able to detect volatility in stock market indexes and to compare its values with the ones obtained from the standard deviation. Also, we shall mention that one of the advantages of this new methodology is its ability to capture nonlinear dynamics. For our purpose, we shall basically focus on the behaviour of stock market indexes and consider the CAC 40, MIB 30, NIKKEI 225, PSI 20, IBEX 35, FTSE 100 and SP 500 for a comparative analysis between the approaches mentioned above.
We build a simple model of leveraged asset purchases with margin calls. Investment funds use what is perhaps the most basic financial strategy, called value investing, i.e. systematically attempting to buy underpriced assets. When funds do not borrow, the price fluctuations of the asset are normally distributed and uncorrelated across time. All this changes when the funds are allowed to leverage, i.e. borrow from a bank, to purchase more assets than their wealth would otherwise permit. During good times competition drives investors to funds that use more leverage, because they have higher profits. As leverage increases price fluctuations become heavy tailed and display clustered volatility, similar to what is observed in real markets. Previous explanations of fat tails and clustered volatility depended on irrational behavior, such as trend following. Here instead this comes from the fact that leverage limits cause funds to sell into a falling market: A prudent bank makes itself locally safer by putting a limit to leverage, so when a fund exceeds its leverage limit, it must partially repay its loan by selling the asset. Unfortunately this sometimes happens to all the funds simultaneously when the price is already falling. The resulting nonlinear feedback amplifies large downward price movements. At the extreme this causes crashes, but the effect is seen at every time scale, producing a power law of price disturbances. A standard (supposedly more sophisticated) risk control policy in which individual banks base leverage limits on volatility causes leverage to rise during periods of low volatility, and to contract more quickly when volatility gets high, making these extreme fluctuations even worse.
We study the volatility time series of 1137 most traded stocks in the US stock markets for the two-year period 2001-02 and analyze their return intervals $tau$, which are time intervals between volatilities above a given threshold $q$. We explore the probability density function of $tau$, $P_q(tau)$, assuming a stretched exponential function, $P_q(tau) sim e^{-tau^gamma}$. We find that the exponent $gamma$ depends on the threshold in the range between $q=1$ and 6 standard deviations of the volatility. This finding supports the multiscaling nature of the return interval distribution. To better understand the multiscaling origin, we study how $gamma$ depends on four essential factors, capitalization, risk, number of trades and return. We show that $gamma$ depends on the capitalization, risk and return but almost does not depend on the number of trades. This suggests that $gamma$ relates to the portfolio selection but not on the market activity. To further characterize the multiscaling of individual stocks, we fit the moments of $tau$, $mu_m equiv <(tau/<tau>)^m>^{1/m}$, in the range of $10 < <tau> le 100$ by a power-law, $mu_m sim <tau>^delta$. The exponent $delta$ is found also to depend on the capitalization, risk and return but not on the number of trades, and its tendency is opposite to that of $gamma$. Moreover, we show that $delta$ decreases with $gamma$ approximately by a linear relation. The return intervals demonstrate the temporal structure of volatilities and our findings suggest that their multiscaling features may be helpful for portfolio optimization.
We investigate the large-volatility dynamics in financial markets, based on the minute-to-minute and daily data of the Chinese Indices and German DAX. The dynamic relaxation both before and after large volatilities is characterized by a power law, and the exponents $p_pm$ usually vary with the strength of the large volatilities. The large-volatility dynamics is time-reversal symmetric at the time scale in minutes, while asymmetric at the daily time scale. Careful analysis reveals that the time-reversal asymmetry is mainly induced by exogenous events. It is also the exogenous events which drive the financial dynamics to a non-stationary state. Different characteristics of the Chinese and German stock markets are uncovered.