Do you want to publish a course? Click here

Quantum interference and non-locality of independent photons from disparate sources

168   0   0.0 ( 0 )
 Added by Ralph Wiegner
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We quantitatively investigate the non-classicality and non-locality of a whole new class of mixed disparate quantum and semiquantum photon sources at the quantum-classical boundary. The latter include photon added thermal and photon added coherent sources, experimentally investigated recently by Zavatta et al. [Phys. Rev. Lett. 103, 140406 (2009)]. The key quantity in our investigations is the visibility of the corresponding photon-photon correlation function. We present explicit results on the violations of the Cauchy-Schwarz inequality - which is a measure of nonclassicality - as well as of Bell-type inequalities.



rate research

Read More

Entangling quantum systems with different characteristics through the exchange of photons is a prerequisite for building future quantum networks. Proving the presence of entanglement between quantum memories for light working at different wavelengths furthers this goal. Here, we report on a series of experiments with a thulium-doped crystal, serving as a quantum memory for 794 nm photons, an erbium-doped fibre, serving as a quantum memory for telecommunication-wavelength photons at 1535 nm, and a source of photon pairs created via spontaneous parametric down-conversion. Characterizing the photons after re-emission from the two memories, we find non-classical correlations with a cross-correlation coefficient of $g^{(2)}_{12} = 53pm8$; entanglement preserving storage with input-output fidelity of $mathcal{F}_{IO}approx93pm2%$; and non-locality featuring a violation of the Clauser-Horne-Shimony-Holt Bell-inequality with $S= 2.6pm0.2$. Our proof-of-principle experiment shows that entanglement persists while propagating through different solid-state quantum memories operating at different wavelengths.
Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80+/-4%, which paves the way to hybrid universal quantum networks.
High visibility on-chip quantum interference among indistinguishable single-photons from multiples sources is a key prerequisite for integrated linear optical quantum computing. Resonant enhancement in micro-ring resonators naturally enables brighter, purer and more indistinguishable single-photon production without any tight spectral filtering. The indistinguishability of heralded single-photons from multiple micro-ring resonators has not been measured in any photonic platform. Here, we report on-chip indistinguishability measurements of heralded single-photons generated from independent micro-ring resonators by using an on-chip Mach-Zehnder interferometer and spectral demultiplexer. We measured the raw heralded two-photon interference fringe visibility as 72 +/- 3%. This result agrees with our model, which includes device imperfections, spectral impurity and multi-pair emissions. We identify multi-pair emissions as the main factor limiting the nonclassical interference visibility, and show a route towards achieving near unity visibility in future experiments.
We demonstrate that intensity correlations of second order in the fluorescence light of N > 2 single- photon emitters may violate locality while the visibility of the signal remains below 71%. For this, we derive a homogeneous Bell-Wigner-type inequality, which can be applied to a broad class of experimental setups. We trace the violation of this inequality back to path entanglement created by the process of detection.
Single photons produced by fundamentally dissimilar physical processes will in general not be indistinguishable. We show how photons produced from a quantum dot and by parametric down-conversion in a nonlinear crystal can be manipulated to be indistinguishable. The measured two-photon coalescence probability is 16%, and is limited by quantum-dot decoherence. Temporal filtering to the quantum dot coherence time and accounting for detector time response increases this to 61% while retaining 25% of the events. This technique can connect different elements in a scalable quantum network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا