Do you want to publish a course? Click here

Large-scale Perturbations from the Waterfall Field in Hybrid Inflation

305   0   0.0 ( 0 )
 Added by David Wands
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual delta-N formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10^{-54} on cosmological scales.



rate research

Read More

257 - Ruopeng Zhang , Sibo Zheng 2021
We consider primordial perturbations from general two-field inflation in interaction picture. We verify that normalized to the single-field case, the power spectrum of scalar perturbations in the two-field version is identical beyond any slow roll approximation, except with different scalar spectral index. We then report that the two bispectrums also coincide at the leading order of slow roll parameters, which divide only at the next-leading order. Combing the scalar spectral index and the tensor-to-scalar ratio, we finally show that two-field chaotic and natural inflation can be distinguished by current BK14/Planck and future CMB-S4 experiment respectively.
We calculate the curvature power spectrum sourced by spectator fields that are excited repeatedly and non-adiabatically during inflation. In the absence of detailed information of the nature of spectator field interactions, we consider an ensemble of models with intervals between the repeated interactions and interaction strengths drawn from simple probabilistic distributions. We show that the curvature power spectra of each member of the ensemble shows rich structure with many features, and there is a large variability between different realizations of the same ensemble. Such features can be probed by the cosmic microwave background (CMB) and large scale structure observations. They can also have implications for primordial black hole formation and CMB spectral distortions. The geometric random walk behavior of the spectator field allows us to calculate the ensemble-averaged power spectrum of curvature perturbations semi-analytically. For sufficiently large stochastic sourcing, the ensemble-averaged power spectrum shows a scale dependence arising from the time spent by modes outside the horizon during the period of particle production, in spite of there being no preferred scale in the underlying model. We find that the magnitude of the ensemble-averaged power spectrum overestimates the typical power spectra in the ensemble because the ensemble distribution of the power spectra is highly non-Gaussian with fat tails.
We present an explicit string realisation of a cosmological inflationary scenario we proposed recently within the framework of type IIB flux compactifications in the presence of three magnetised D7-brane stacks. Inflation takes place around a metastable de Sitter vacuum. The inflaton is identified with the volume modulus and has a potential with a very shallow minimum near the maximum. Inflation ends due to the presence of waterfall fields that drive the evolution of the Universe from a nearby saddle point towards a global minimum with tuneable vacuum energy describing the present state of our Universe.
The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{rm NL}^{rm loc}$ ($f_{rm NL}^{rm eq}$), natural target levels of sensitivity are $Delta f_{rm NL}^{rm loc, eq.} simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.
98 - Lotfi Boubekeur 2013
Effective field theory is a powerful organizing principle that allows to describe physics below a certain scale model-independently. Above that energy scale, identified with the cutoff, the EFT description breaks down and new physics is expected to appear, as confirmed in many familiar examples in quantum field theory. In this work, we examine the validity of effective field theory methods applied to inflation. We address the issue of whether Planck-suppressed non-renormalizable interactions are suppressed enough to be safely neglected when computing inflationary predictions. We focus on non-derivative non-renormalizable operators and estimate the cutoff that should suppress them using two independent approaches: (i) the usual unitarity and perturbativity argument, (ii) by computing the UV-divergent part of the inflaton entropy, known to scale as the square of the UV-cutoff. We find that in the absence of gravity (decoupling limit) the cutoff appears to depends linearly on the total inflaton excursion. On the other hand, once gravity is restored, the cutoff is brought back to the Planck scale. These results suggest that inflationary scenarios with super-Planckian excursion are not natural from the EFT viewpoint.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا