Do you want to publish a course? Click here

On the Size of the Non-Thermal Component in the Radio Emission from Cyg OB2 #5

111   0   0.0 ( 0 )
 Added by Laurent Loinard
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cyg OB2 #5 is a contact binary system with variable radio continuum emission. This emission has a low-flux state where it is dominated by thermal emission from the ionized stellar wind and a high-flux state where an additional non-thermal component appears. The variations are now known to have a period of 6.7 +/- 0.2 yr. The non-thermal component has been attributed to different agents: an expanding envelope ejected periodically from the binary, emission from a wind-collision region, or a star with non-thermal emission in an eccentric orbit around the binary. The determination of the angular size of the non-thermal component is crucial to discriminate between these alternatives. We present the analysis of VLA archive observations made at 8.46 GHz in 1994 (low state) and 1996 (high state), that allow us to subtract the effect of the persistent thermal emission and to estimate an angular size of 0.02 arcseconds for the non-thermal component. This compact size favors the explanation in terms of a star with non-thermal emission or of a wind-collision region.



rate research

Read More

240 - Gisela Ortiz-Leon 2011
The radio emission from the well-studied massive stellar system Cyg OB2 #5 is known to fluctuate with a period of 6.7 years between a low-flux state when the emission is entirely of free-free origin, and a high-flux state when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours, and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system, and that of an unseen companion on a somewhat eccentric orbit with a 6.7-yr period and a 5 to 10 mas semi-major axis. Together with the previously reported wind-collision region located about 0.8 arcsec to the north-east of the contact binary, Cyg OB2 #5 appears to be the only multiple system known so far to harbor two radio-imaged wind-collision regions.
The Cyg OB2 #5 system is thought to consist of a short-period (6.6 d) eclipsing massive binary orbited by an OB-star orbiting with a period of ~6.7 yr; these stars in turn are orbited by a distant early B-star with a period of thousands of years. However, while the inner binary has been studied many times, information is missing on the other stars, in particular the third star whose presence was indirectly postulated from recurrent modulations in the radio domain. Besides, to this date, the X-ray light curve could not be fully interpreted, for example in the framework of colliding-wind emission linked to one of the systems. We obtained new optical and X-ray observations of Cyg OB2 #5, which we combined to archival data. We performed a thorough and homogeneous investigation of all available data, notably revisiting the times of primary minimum in photometry. In the X-ray domain, XMM-Newton provides scattered exposures over ~5000 d whilst Swift provides a nearly continuous monitoring for the last couple of years. Although the X-ray light curve reveals clear variability, no significant period can be found hence the high-energy emission cannot be explained solely in terms of colliding winds varying along either the short or intermediate orbits. The optical data reveal for the first time clear signs of reflex motion. The photometry indicates the presence of a 2366 d (i.e. 6.5 yr) period while the associated radial velocity changes are detected at the 3 sigma level in the systemic velocity of the He II 4686 emission line. With the revised period, the radio light curve is interpreted consistently in terms of a wind interaction between the inner binary and the tertiary star. From these optical and radio data, we derive constraints on the physical properties of the tertiary star and its orbit.
We study the non-thermal radio emission of the binary Cyg OB2 No. 8A, to see if it is variable and if that variability is locked to the orbital phase. We investigate if the synchrotron emission generated in the colliding-wind region of this binary can explain the observations and we verify that our proposed model is compatible with the X-ray data. We use both new and archive radio data from the Very Large Array (VLA) to construct a light curve as a function of orbital phase. We also present new X-ray data that allow us to improve the X-ray light curve. We develop a numerical model for the colliding-wind region and the synchrotron emission it generates. The model also includes free-free absorption and emission due to the stellar winds of both stars. In this way we construct artificial radio light curves and compare them with the observed one. The observed radio fluxes show phase-locked variability. Our model can explain this variability because the synchrotron emitting region is not completely hidden by the free-free absorption. In order to obtain a better agreement for the phases of minimum and maximum flux we need to use stellar wind parameters for the binary components which are somewhat different from typical values for single stars. We verify that the change in stellar parameters does not influence the interpretation of the X-ray light curve. Our model has trouble explaining the observed radio spectral index. This could indicate the presence of clumping or porosity in the stellar wind, which - through its influence on both the Razin effect and the free-free absorption - can considerably influence the spectral index. Non-thermal radio emitters could therefore open a valuable pathway to investigate the difficult issue of clumping in stellar winds.
Aims: Non-thermal radio emission associated with massive stars is believed to arise from a wind-wind collision in a binary system. However, the evidence of binarity is still lacking in some cases, notably Cyg OB2 #9 Methods: For several years, we have been monitoring this heavily-reddened star from various observatories. This campaign allowed us to probe variations both on short and long timescales and constitutes the first in-depth study of the visible spectrum of this object. Results: Our observations provide the very first direct evidence of a companion in Cyg OB2 #9, confirming the theoretical wind-wind collision scenario. These data suggest a highly eccentric orbit with a period of a few years, compatible with the 2yr-timescale measured in the radio range. In addition, the signature of the wind-wind collision is very likely reflected in the behaviour of some emission lines.
Some OB stars show variable non-thermal radio emission. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated to high energies. The electron acceleration occurs at strong shocks created by the collision of radiatively-driven stellar winds in binary systems. Here we present results of our modelling of two colliding wind systems: Cyg OB2 No. 8A and Cyg OB2 No. 9.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا