No Arabic abstract
Investigating the relation between the structure and behavior of complex biological networks often involves posing the following two questions: Is a hypothesized structure of a regulatory network consistent with the observed behavior? And can a proposed structure generate a desired behavior? Answering these questions presupposes that we are able to test the compatibility of network structure and behavior. We cast these questions into a parameter search problem for qualitative models of regulatory networks, in particular piecewise-affine differential equation models. We develop a method based on symbolic model checking that avoids enumerating all possible parametrizations, and show that this method performs well on real biological problems, using the IRMA synthetic network and benchmark experimental data sets. We test the consistency between the IRMA network structure and the time-series data, and search for parameter modifications that would improve the robustness of the external control of the system behavior.
To support and guide an extensive experimental research into systems biology of signaling pathways, increasingly more mechanistic models are being developed with hopes of gaining further insight into biological processes. In order to analyse these models, computational and statistical techniques are needed to estimate the unknown kinetic parameters. This chapter reviews methods from frequentist and Bayesian statistics for estimation of parameters and for choosing which model is best for modeling the underlying system. Approximate Bayesian Computation (ABC) techniques are introduced and employed to explore different hypothesis about the JAK-STAT signaling pathway.
We study a class of growth algorithms for directed graphs that are candidate models for the evolution of genetic regulatory networks. The algorithms involve partial duplication of nodes and their links, together with innovation of new links, allowing for the possibility that input and output links from a newly created node may have different probabilities of survival. We find some counterintuitive trends as parameters are varied, including the broadening of indegree distribution when the probability for retaining input links is decreased. We also find that both the scaling of transcription factors with genome size and the measured degree distributions for genes in yeast can be reproduced by the growth algorithm if and only if a special seed is used to initiate the process.
The amount of mutual information contained in time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs <I> is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating <I> show that as the number of network nodes N approaches infinity, the quantity N<I> exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N<I> is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.
We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture.
Bayesian inference methods rely on numerical algorithms for both model selection and parameter inference. In general, these algorithms require a high computational effort to yield reliable estimates. One of the major challenges in phylogenetics is the estimation of the marginal likelihood. This quantity is commonly used for comparing different evolutionary models, but its calculation, even for simple models, incurs high computational cost. Another interesting challenge relates to the estimation of the posterior distribution. Often, long Markov chains are required to get sufficient samples to carry out parameter inference, especially for tree distributions. In general, these problems are addressed separately by using different procedures. Nested sampling (NS) is a Bayesian computation algorithm which provides the means to estimate marginal likelihoods together with their uncertainties, and to sample from the posterior distribution at no extra cost. The methods currently used in phylogenetics for marginal likelihood estimation lack in practicality due to their dependence on many tuning parameters and the inability of most implementations to provide a direct way to calculate the uncertainties associated with the estimates. To address these issues, we introduce NS to phylogenetics. Its performance is assessed under different scenarios and compared to established methods. We conclude that NS is a competitive and attractive algorithm for phylogenetic inference. An implementation is available as a package for BEAST 2 under the LGPL licence, accessible at https://github.com/BEAST2-Dev/nested-sampling.