Do you want to publish a course? Click here

Network growth models and genetic regulatory networks

131   0   0.0 ( 0 )
 Publication date 2005
  fields Biology
and research's language is English




Ask ChatGPT about the research

We study a class of growth algorithms for directed graphs that are candidate models for the evolution of genetic regulatory networks. The algorithms involve partial duplication of nodes and their links, together with innovation of new links, allowing for the possibility that input and output links from a newly created node may have different probabilities of survival. We find some counterintuitive trends as parameters are varied, including the broadening of indegree distribution when the probability for retaining input links is decreased. We also find that both the scaling of transcription factors with genome size and the measured degree distributions for genes in yeast can be reproduced by the growth algorithm if and only if a special seed is used to initiate the process.



rate research

Read More

The genetic regulatory network (GRN) plays a key role in controlling the response of the cell to changes in the environment. Although the structure of GRNs has been the subject of many studies, their large scale structure in the light of feedbacks from the metabolic network (MN) has received relatively little attention. Here we study the causal structure of the GRNs, namely the chain of influence of one component on the other, taking into account feedback from the MN. First we consider the GRNs of E. coli and B. subtilis without feedback from MN and illustrate their causal structure. Next we augment the GRNs with feedback from their respective MNs by including (a) links from genes coding for enzymes to metabolites produced or consumed in reactions catalyzed by those enzymes and (b) links from metabolites to genes coding for transcription factors whose transcriptional activity the metabolites alter by binding to them. We find that the inclusion of feedback from MN into GRN significantly affects its causal structure, in particular the number of levels and relative positions of nodes in the hierarchy, and the number and size of the strongly connected components (SCCs). We then study the functional significance of the SCCs. For this we identify condition specific feedbacks from the MN into the GRN by retaining only those enzymes that are essential for growth in specific environmental conditions simulated via the technique of flux balance analysis (FBA). We find that the SCCs of the GRN augmented by these feedbacks can be ascribed specific functional roles in the organism. Our algorithmic approach thus reveals relatively autonomous subsystems with specific functionality, or regulatory modules in the organism. This automated approach could be useful in identifying biologically relevant modules in other organisms for which network data is available, but whose biology is less well studied.
Based on a recently proposed non-equilibrium mechanism for spatial pattern formation [cond-mat/0312366] we study how morphogenesis can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism. As an example we study the developmental problem of domain formation and proportion regulation in the presence of noise and cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. A further focus of this paper is a detailed study of noise-induced dynamics, which is a major ingredient of the control dynamics in the developmental network model. A master equation for domain boundary readjustments is formulated and solved for the continuum limit. Evidence for a first order phase transition in equilibrium domain size at vanishing noise is given by finite size scaling. A second order phase transition at increased cell flow is studied in a mean field approximation. Finally, we discuss potential applications.
The complex dynamics of gene expression in living cells can be well-approximated using Boolean networks. The average sensitivity is a natural measure of stability in these systems: values below one indicate typically stable dynamics associated with an ordered phase, whereas values above one indicate chaotic dynamics. This yields a theoretically motivated adaptive advantage to being near the critical value of one, at the boundary between order and chaos. Here, we measure average sensitivity for 66 publicly available Boolean network models describing the function of gene regulatory circuits across diverse living processes. We find the average sensitivity values for these networks are clustered around unity, indicating they are near critical. In many types of random networks, mean connectivity <K> and the average activity bias of the logic functions <p> have been found to be the most important network properties in determining average sensitivity, and by extension a networks criticality. Surprisingly, many of these gene regulatory networks achieve the near-critical state with <K> and <p> far from that predicted for critical systems: randomized networks sharing the local causal structure and local logic of biological networks better reproduce their critical behavior than controlling for macroscale properties such as <K> and <p> alone. This suggests the local properties of genes interacting within regulatory networks are selected to collectively be near-critical, and this non-local property of gene regulatory network dynamics cannot be predicted using the density of interactions alone.
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا