Do you want to publish a course? Click here

Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices

150   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A hypothetical layered oxide La_2NiMO_6 where NiO_2 and MO_2 planes alternate along the c-axis of ABO_3 perovskite lattice is considered theoretically. Here, M denotes a trivalent cation Al, Ga,... such that MO_2 planes are insulating and suppress the c-axis charge transfer. We predict that correlated e_g electrons in the NiO_2 planes develop a planar x^2-y^2 orbital order driven by the reduced dimensionality and further supported by epitaxial strain from the substrate. Low energy electronic states can be mapped to a single-band t-t-J model, suggesting favorable conditions for high-T_c superconductivity.



rate research

Read More

We observe interfacial ferromagnetism in superlattices of the paramagnetic metal LaNiO3 and the antiferromagnetic insulator CaMnO3. LaNiO3 exhibits a thickness dependent metal-insulator transition and we find the emergence of ferromagnetism to be coincident with the conducting state of LaNiO3. That is, only superlattices in which the LaNiO3 layers are metallic exhibit ferromagnetism. Using several magnetic probes, we have determined that the ferromagnetism arises in a single unit cell of CaMnO3 at the interface. Together these results suggest that ferromagnetism can be attributed to a double exchange interaction among Mn ions mediated by the adjacent itinerant metal.
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the essential condition for realizing orbital orders, we study simple two-orbital ($d_{xz}$, $d_{yz}$) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, $d_{xy}$ orbital is not essential to realize the nematic orbital order. The obtained orbital order depends on the orbital dependence and the topology of fermi surfaces. We also find that another type of orbital order, which is rotated $45^circ$, appears in the heavily hole-doped case.
In triangular lattice structures, spatial anisotropy and frustration can lead to rich equilibrium phase diagrams with regions containing complex, highly entangled states of matter. In this work we study the driven two-rung triangular Hubbard model and evolve these states out of equilibrium, observing how the interplay between the driving and the initial state unexpectedly shuts down the particle-hole excitation pathway. This restriction, which symmetry arguments fail to predict, dictates the transient dynamics of the system, causing the available particle-hole degrees of freedom to manifest uniform long-range order. We discuss implications of our results for a recent experiment on photo-induced superconductivity in ${rm kappa - (BEDT-TTF)_{2}Cu[N(CN)_{2}]Br}$ molecules.
$rm CePt_3Si$ is a novel heavy fermion superconductor, crystallising in the $rm CePt_3B$ structure as a tetragonally distorted low symmetry variant of the $rm AuCu_3$ structure type. $rm CePt_3Si$ exhibits antiferromagnetic order at $T_N approx 2.2$ K and enters into a heavy fermion superconducting state at $T_c approx 0.75$ K. Large values of $H_{c2} approx -8.5$ T/K and $H_{c2}(0) approx 5$ T refer to heavy quasiparticles forming Cooper pairs. Hitherto, $rm CePt_3Si$ is the first heavy fermion superconductor without a center of symmetry.
Superconductivity and magnetic order strongly compete in many conventional superconductors, at least partly because both tend to gap the Fermi surface. In magnetically-ordered conventional superconductors, the competition between these cooperative phenomena leads to anomalies at magnetic and superconducting phase boundaries. Here we reveal that in Pr2Pt3Ge5 superconducting and multiple magnetic order are intertwined within the same HT-phase space, but remain completely decoupled. Our thermal conductivity measurements provide evidence for normal electrons in the superconducting phase from which magnetic order emerges with negligible coupling to electron bands that contribute to superconductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا