Do you want to publish a course? Click here

$Om$ Diagnostic for Dilaton Dark Energy

110   0   0.0 ( 0 )
 Added by Zengguang Huang
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

$Om$ diagnostic can differentiate between different models of dark energy without the accurate current value of matter density. We apply this geometric diagnostic to dilaton dark energy(DDE) model and differentiate DDE model from LCDM. We also investigate the influence of coupled parameter $alpha$ on the evolutive behavior of $Om$ with respect to redshift $z$. According to the numerical result of $Om$, we get the current value of equation of state $omega_{sigma0}$=-0.952 which fits the WMAP5+BAO+SN very well.



rate research

Read More

Statefinder diagnostic is a useful method which can differ one dark energy model from the others. The Statefinder pair ${r, s}$ is algebraically related to the equation of state of dark energy and its first time derivative. We apply in this paper this method to the dilaton dark energy model based on Weyl-Scaled induced gravitational theory. We investigate the effect of the coupling between matter and dilaton when the potential of dilaton field is taken as the Mexican hat form. We find that the evolving trajectory of our model in the $r-s$ diagram is quite different from those of other dark energy models.
114 - Z. G. Huang , H. Q. Lu 2008
Using a new method--statefinder diagnostic which can differ one dark energy model from the others, we investigate in this letter the dynamics of Born-Infeld(B-I) type dark energy model. The evolutive trajectory of B-I type dark energy with Mexican hat potential model with respect to $e-folding$ time $N$ is shown in the $r(s)$ diagram. When the parameter of noncanonical kinetic energy term $etato0$ or kinetic energy $dot{phi}^2to0$, B-I type dark energy(K-essence) model reduces to Quintessence model or $Lambda$CDM model corresponding to the statefinder pair ${r, s}$=${1, 0}$ respectively. As a result, the the evolutive trajectory of our model in the $r(s)$ diagram in Mexican hat potential is quite different from those of other dark energy models.
We study a coupled quintessence model with pure momentum exchange and present the effects of such an interaction on the Cosmic Microwave Background (CMB) and matter power spectrum. For a wide range of negative values of the coupling parameter $beta$ structure growth is suppressed and the model can reconcile the tension between Cosmic Microwave Background observations and structure growth inferred from cluster counts. We find that this model is as good as $Lambda$CDM for CMB and baryon acoustic oscillation (BAO) data, while the addition of cluster data makes the model strongly preferred, improving the best-fit $chi^2$-value by more than $16$.
246 - Ilya Gurwich 2010
A new class of neutrino dark energy models is presented. The new models are characterized by the lack of exotic particles or couplings that violate the standard model symmetry. It is shown that these models lead to several concrete predictions for the dark energy equation of state, as well as possible effects on the cosmic structure formation. These predictions, can be verified (or disproved) with future experiments. At this point, the strongest constraints on these models are obtained from big bang nucleosynthesis, and lead to new bounds on the mass of the lightest neutrino.
New measurements of the expansion rate of the Universe have plunged the standard model of cosmology into a severe crisis. In this letter, we propose a simple resolution to the problem that relies on a first order phase transition in a dark sector in the early Universe, before recombination. This will lead to a short phase of a New Early Dark Energy (NEDE) component and can explain the observations. We model the false vacuum decay of the NEDE scalar field as a sudden transition from a cosmological constant source to a decaying fluid with constant equation of state. The corresponding fluid perturbations are covariantly matched to the adiabatic fluctuations of a sub-dominant scalar field that triggers the phase transition. Fitting our model to measurements of the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO, and supernovae (SNe) yields a significant improvement of the best-fit compared with the standard cosmological model without NEDE. We find the mean value of the present Hubble parameter in the NEDE model to be $H_0=71.4 pm 1.0 ~textrm{km}, textrm{s}^{-1}, textrm{Mpc}^{-1}$ ($68, %$ C.L.).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا