No Arabic abstract
We present a detailed analysis of resonant inelastic scattering (RIXS) from Fe$_{1.087}$Te with unprecedented energy resolution. In contrast to the sharp peaks typically seen in insulating systems at the transition metal $L_3$ edge, we observe spectra which show different characteristic features. For low energy transfer, we experimentally observe theoretically predicted many-body effects of resonant Raman scattering from a non-interacting gas of fermions. Furthermore, we find that limitations to this many-body electron-only theory are realized at high Raman shift, where an exponential lineshape reveals an energy scale not present in these considerations. This regime, identified as emission, requires considerations of lattice degrees of freedom to understand the lineshape. We argue that both observations are intrinsic general features of many-body physics of metals.
We present calculations for resonant inelastic x-ray scattering (RIXS) in edge-shared copper oxide systems, such as CuGeO$_{3}$ and Li$_{2}$CuO$_{2}$, appropriate for hard x-ray scattering where the photoexcited electron lies above oxygen 2p and copper 3d orbital energies. We perform exact diagonalizations of the multi-band Hubbard and determine the energies, orbital character and resonance profiles of excitations which can be probed via RIXS. We find excellent agreement with recent results on Li$_{2}$CuO$_{2}$ and CuGeO$_{3}$ in the 2-7 eV photon energy loss range.
Fe$_{1+x}$Te is a two dimensional van der Waals antiferromagnet that becomes superconducting on anion substitution on the Te site. The parent phase of Fe$_{1+x}$Te is sensitive to the amount of interstitial iron situated between the iron-tellurium layers displaying collinear magnetic order coexisting with low temperature metallic resistivity for small concentrations of interstitial iron $x$ and helical magnetic order for large values of $x$. While this phase diagram has been established through scattering [see for example E. E. Rodriguez $textit{et al.}$ Phys. Rev. B ${bf{84}}$, 064403 (2011) and S. Rossler $textit{et al.}$ Phys. Rev. B ${bf{84}}$, 174506 (2011)], recent scanning tunnelling microscopy measurements [C. Trainer $textit{et al.}$ Sci. Adv. ${bf{5}}$, eaav3478 (2019)] have observed a different magnetic structure for small interstitial iron concentrations $x$ with a significant canting of the magnetic moments along the crystallographic $c$ axis of $theta$=28 $pm$ 3$^{circ}$. In this paper, we revisit the magnetic structure of Fe$_{1.09}$Te using spherical neutron polarimetry and scanning tunnelling microscopy to search for this canting in the bulk phase and compare surface and bulk magnetism. The results show that the bulk magnetic structure of Fe$_{1.09}$Te is consistent with collinear in-plane order ($theta=0$ with an error of $sim$ 5$^{circ}$). Comparison with scanning tunnelling microscopy on a series of Fe$_{1+x}$Te samples reveals that the surface exhibits a magnetic surface reconstruction with a canting angle of the spins of $theta=29.8^{circ}$. We suggest that this is a consequence of structural relaxation of the surface layer resulting in an out-of-plane magnetocrystalline anisotropy. The magnetism in Fe$_{1+x}$Te displays different properties at the surface when the symmetry constraints of the bulk are removed.
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and non-resonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom -- the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usual through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting ones ability to quantitively characterize the coupling. Here we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an 8-band model of copper oxides, we study the contributions from the lowest order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross-section as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and non-resonant x-ray scattering, as well as Raman and infrared conductivity.
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co$_{1-x}$Fe$_{x}$)$_{y}$As$_{2}$, $0leq xleq1$, $1.86leq y leq 2$, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the $c$ axis, persists for $xlesssim0.12(1)$. The antiferromagnetic order is smoothly suppressed with increasing $x$, with both the ordered moment and N{e}el temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for $xleq0.25$, nor does ferromagnetic order for $x$ up to at least $x=0.104$, and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo$_{1.86}$As$_{2}$ to the tetragonal (T) phase of CaFe$_{2}$As$_{2}$ occurs. These results suggest that hole doping CaCo$_{1.86}$As$_{2}$ has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
Using complementary polarized and unpolarized single-crystal neutron diffraction, we have investigated the temperature-dependent magnetic structures of Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$. Upon 50 % dilution of the Eu sites with isovalent Ca$^{2+}$, the Eu sublattice is found to be still long-range ordered below $mathit{T_{Eu}}$ = 10 K, in the A-typed antiferromagnetic (AFM) structure. The moment size of Eu$^{2+}$ spins is estimated to be as large as 6.74(4) $mu_{B}$ at 2.5 K. The Fe sublattice undergoes a spin-density-wave transition at $mathit{T_{SDW}}$ = 192(2) K and displays an in-plane AFM structure above $mathit{T_{Eu}}$. However, at 2.5 K, the Fe$^{2+}$ moments are found to be ordered in a canted AFM structure with a canting angle of 14(4){deg} out of the $mathit{ab}$ plane. The spin reorientation of Fe below the AFM ordering temperature of Eu provides a direct evidence of a strong interplay between the two magnetic sublattices in Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$.