No Arabic abstract
At large virtuality $Q^2$, the coupling to the vector meson production channels provides us with a natural explanation of the surprisingly large cross section of the neutral pion electroproduction recently measured at Jefferson Laboratory, without destroying the good agreement between the Regge pole model and the data at the real photon point. Elastic rescattering of the $pi^0$ provides us with a way to explain why the node, that appears at $tsim -0.5$ GeV$^2$ at the real photon point, disappears as soon as $Q^2$ differs from zero.
We derive partial-wave unitarity constraints on gauge-invariant interactions of an Axion-Like Particle (ALP) up to dimension-6 from all allowed $2to2$ scattering processes in the limit of large center-of-mass energy. We find that the strongest bounds stem from scattering amplitudes with one external ALP and only apply to the coupling to a pair of $SU(2)_L$ gauge bosons. Couplings to $U(1)_Y$ and $SU(3)_C$ gauge bosons and to fermions are more loosely constrained.
We obtain the partial-wave unitarity constraints on dimension-six operators stemming from the analyses of vector boson and Higgs scattering processes as well as the inelastic scattering of standard model fermions into electroweak gauge bosons. We take into account all coupled channels, all possible helicity amplitudes, and explore a six-dimensional parameter space of anomalous couplings. Our analysis shows that for those operators affecting the Higgs couplings, present 90% confidence level constraints from global data analysis of Higgs and electroweak data are such that unitarity is not violated if $sqrt{s}leq 3.2;{rm TeV}$. For the purely gauge-boson operator $O_{WWW}$, the present bounds from triple-gauge boson analysis indicate that within its presently allowed 90% confidence level range unitarity can be violated in $fbar f to V V$ at center-of-mass energy $sqrt{s}geq 2.4;{rm TeV}$.
The invariant amplitudes for pion electroproduction on the nucleon are evaluated by dispersion relations at constant t with MAID as input for the imaginary parts of these amplitudes. In the threshold region these amplitudes are confronted with the predictions of several low-energy theorems derived in the soft-pion limit. In general agreement with Chiral Perturbation Theory, the dispersive approach yields large corrections to these theorems because of the finite pion mass.
In the high-energy domain, gluon transverse-momentum dependent distributions in nuclei obey constraints coming from positivity and unitarity of the colorless QCD dipole distributions through Fourier-Bessel transformations. Using mathematical properties of Fourier-positive functions, we investigate the nature of these constraints which apply to dipole model building and formulation
The unitarity of the lepton mixing matrix is a critical assumption underlying the standard neutrino-mixing paradigm. However, many models seeking to explain the as-yet-unknown origin of neutrino masses predict deviations from unitarity in the mixing of the active neutrino states. Motivated by the prospect that future experiments may provide a precise measurement of the lepton mixing matrix, we revisit current constraints on unitarity violation from oscillation measurements and project how next-generation experiments will improve our current knowledge. With the next-generation data, the normalizations of all rows and columns of the lepton mixing matrix will be constrained to $lesssim$10% precision, with the $e$-row best measured at $lesssim$1% and the $tau$-row worst measured at ${sim}10%$ precision. The measurements of the mixing matrix elements themselves will be improved on average by a factor of $3$. We highlight the complementarity of DUNE, T2HK, JUNO, and IceCube Upgrade for these improvements, as well as the importance of $ u_tau$ appearance measurements and sterile neutrino searches for tests of leptonic unitarity.