No Arabic abstract
Graphene is attractive for spintronics due to its long spin life time and high mobility. So far only thick and polycrystalline slabs have been used as ferromagnetic electrodes. We report the growth of flat, epitaxial ultrathin Co films on graphene. These display perpendicular magnetic anisotropy in the thickness range 0.5-1nm, which is confirmed by theory. PMA, epitaxy and ultrathin thickness bring new perspectives for graphene-based spintronic devices such as the zero-field control of an arbitrary magnetization direction, band matching between electrodes and graphene, and interface effects such as Rashba and electric field control of magnetism.
The structures of epitaxial ultrathin Co2FeAl/MgO(001) heterostructures relating to the interface-induced perpendicular magnetic anisotropy (PMA) were investigated using scanning transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray magnetic circular dichroism. We found that Al atoms from the Co2FeAl layer significantly interdiffuse into MgO, forming an Al-deficient Co-Fe-Al/Mg-Al-O structure near the Co2FeAl/MgO interface. This atomic replacement may play an additional role for enhancing PMA, which is consistent with the observed large perpendicular orbital magnetic moments of Fe atoms at the interface. This work suggests that control of interdiffusion at ferromanget/barrier interfaces is critical for designing an interface-induced PMA system.
A combination of theoretical modelling and experiments reveals the origin of the large perpendicular magnetic anisotropy (PMA) that appears in nanometer-thick epitaxial Co films intercalated between graphene (Gr) and a heavy metal (HM) substrate, as a function of the Co thickness. High quality epitaxial Gr/Co /HM(111) (HM=Pt,Ir) heterostructures are grown by intercalation below graphene, which acts as a surfactant that kinetically stabilizes the pseudomorphic growth of highly perfect Co face-centered tetragonal ($fct$) films, with a reduced number of stacking faults as the only structural defect observable by high resolution scanning transmission electron microscopy (HR-STEM). Magneto-optic Kerr effect (MOKE) measurements show that such heterostructures present PMA up to large Co critical thicknesses of about 4~nm (20~ML) and 2~nm (10~ML) for Pt and Ir substrates, respectively, while X-ray magnetic circular dichroism (XMCD) measurements show an inverse power law of the anistropy of the orbital moment with Co thickness, reflecting its interfacial nature, that changes sign at about the same critical values. First principles calculations show that, regardless of the presence of graphene, ideal Co $fct$ films on HM buffers do not sustain PMAs beyond around 6~MLs due to the in-plane contribution of the inner bulk-like Co layers. The large experimental critical thicknesses sustaining PMA can only be retrieved by the inclusion of structural defects that promote a local $hcp$ stacking such as twin boundaries or stacking faults. Remarkably, a layer resolved analysis of the orbital momentum anisotropy reproduces its interfacial nature, and reveals that the Gr/Co interface contribution is comparable to that of the Co/Pt(Ir).
We report on magnetic domain wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain wall motion, analysis of which yields values for the damping parameter, $alpha$.
We show tunable strain-induced perpendicular magnetic anisotropy (PMA) over a wide range of thicknesses in epitaxial ferrimagnetic insulator Eu3Fe5O12 (EuIG) and Tb3Fe5O12 (TbIG) thin films grown by pulsed-laser deposition on Gd3Ga5O12 with (001) and (111) orientations, respectively. The PMA field is determined by measuring the induced anomalous Hall loops in Pt deposited on the garnet films. Due to positive magnetostriction constants, compressive in-plane strain induces a PMA field as large as 32.9 kOe for 4 nm thick EuIG and 66.7 kOe for 5 nm thick TbIG at 300 K, and relaxes extremely slowly as the garnet film thickness increases. In bilayers consisting of Pt and EuIG or Pt and TbIG, robust PMA is revealed by squared anomalous Hall hysteresis loops in Pt, the magnitude of which appears to be only related to the net magnetic moment of iron sublattices. Furthermore, the magnetostriction constant is found to be 2.7x10^(-5) for EuIG and 1.35x10^(-5) for TbIG, comparable with the values for bulk crystals. Our results demonstrate a general approach of tailoring magnetic anisotropy of rare earth iron garnets by utilizing modulated strain via epitaxial growth.
Graphene is a 2D material that displays excellent electronic transport properties with prospective applications in many fields. Inducing and controlling magnetism in the graphene layer, for instance by proximity of magnetic materials, may enable its utilization in spintronic devices. This paper presents fabrication and detailed characterization of single-layer graphene formed on the surface of epitaxial FeRh thin films. The magnetic state of the FeRh surface can be controlled by temperature, magnetic field or strain due to interconnected order parameters. Characterization of graphene layers by X-ray Photoemission and X-ray Absorption Spectroscopy, Low-Energy Ion Scattering, Scanning Tunneling Microscopy, and Low-Energy Electron Microscopy shows that graphene is single-layer, polycrystalline and covers more than 97% of the substrate. Graphene displays several preferential orientations on the FeRh(001) surface with unit vectors of graphene rotated by 30{deg}, 15{deg}, 11{deg}, and 19{deg} with respect to FeRh substrate unit vectors. In addition, the graphene layer is capable to protect the films from oxidation when exposed to air for several months. Therefore, it can be also used as a protective layer during fabrication of magnetic elements or as an atomically thin spacer, which enables incorporation of switchable magnetic layers within stacks of 2D materials in advanced devices.