No Arabic abstract
The SAGE-Spec Spitzer Legacy program is a spectroscopic follow-up to the SAGE-LMC photometric survey of the Large Magellanic Cloud carried out with the Spitzer Space Telescope. We present an overview of SAGE-Spec and some of its first results. The SAGE-Spec program aims to study the life cycle of gas and dust in the Large Magellanic Cloud, and to provide information essential to the classification of the point sources observed in the earlier SAGE-LMC photometric survey. We acquired 224.6 hours of observations using the InfraRed Spectrograph and the SED mode of the Multiband Imaging Photometer for Spitzer. The SAGE-Spec data, along with archival Spitzer spectroscopy of objects in the Large Magellanic Cloud, are reduced and delivered to the community. We discuss the observing strategy, the specific data reduction pipelines applied and the dissemination of data products to the scientific community. Initial science results include the first detection of an extragalactic 21 um feature towards an evolved star and elucidation of the nature of disks around RV Tauri stars in the Large Magellanic Cloud. Towards some young stars, ice features are observed in absorption. We also serendipitously observed a background quasar, at a redshift of z~0.14, which appears to be host-less.
The Infrared Spectrograph (IRS) on the {em Spitzer Space Telescope} observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1,000 spectra. 197 of these targets were observed as part of the Sage-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership, and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and H,{sc ii} regions, post-Main Sequence low-mass stars: (post-)AGB stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the Large Magellanic Cloud, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely-used catalogues of objects contain considerable contamination and others are missing sources in our sample.
We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3-24 microns in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/Lo>=4) and the rare, dusty progenitors of the new class of optical transients (e.g. SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
Formation of GMCs is one of the most crucial issues in galaxy evolution. I will compare CO and HI in the LMC in 3 dimensional space for the first time aiming at revealing the physical connection between GMCs and associated HI gas at a ~40 pc scale. The present major findings are 1) [total CO intensity] [total HI intensity]0.8 for the 110 GMCs, and 2) the HI intensity tends to increase with the evolution of GMCs. I argue that these findings are consistent with the growth of GMCs via HI accretion over a time scale of a few x 10 Myrs. I will also discuss the role of the background stellar gravity and the dynamical compression by supershells in formation of GMCs.
We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the SAGE survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24 micron images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and 2MASS magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found to not significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form as the well-established [O III] LFs although there are several PNe with observed IR magnitudes brighter than the cut-offs in these LFs.
Dust offers a unique probe of the interstellar medium (ISM) across multiple size, density, and temperature scales. Dust is detected in outflows of evolved stars, star-forming molecular clouds, planet-forming disks, and even in galaxies at the dawn of the Universe. These grains also have a profound effect on various astrophysical phenomena from thermal balance and extinction in galaxies to the building blocks for planets, and changes in dust grain properties will affect all of these phenomena. A full understanding of dust in all of its forms and stages requires a multi-disciplinary investigation of the dust life cycle. Such an investigation can be achieved with a statistical study of dust properties across stellar evolution, star and planet formation, and redshift. Current and future instrumentation will enable this investigation through fast and sensitive observations in dust continuum, polarization, and spectroscopy from near-infrared to millimeter wavelengths.