Do you want to publish a course? Click here

CO, HI, recent Spitzer SAGE results in the Large Magellanic Cloud

129   0   0.0 ( 0 )
 Added by Takahiro Hayakawa
 Publication date 2007
  fields Physics
and research's language is English
 Authors Yasuo Fukui




Ask ChatGPT about the research

Formation of GMCs is one of the most crucial issues in galaxy evolution. I will compare CO and HI in the LMC in 3 dimensional space for the first time aiming at revealing the physical connection between GMCs and associated HI gas at a ~40 pc scale. The present major findings are 1) [total CO intensity] [total HI intensity]0.8 for the 110 GMCs, and 2) the HI intensity tends to increase with the evolution of GMCs. I argue that these findings are consistent with the growth of GMCs via HI accretion over a time scale of a few x 10 Myrs. I will also discuss the role of the background stellar gravity and the dynamical compression by supershells in formation of GMCs.



rate research

Read More

We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the SAGE survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24 micron images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and 2MASS magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found to not significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form as the well-established [O III] LFs although there are several PNe with observed IR magnitudes brighter than the cut-offs in these LFs.
We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3-24 microns in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/Lo>=4) and the rare, dusty progenitors of the new class of optical transients (e.g. SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the Spitzer Space Telescope in order to survey the agents of a galaxys evolution (SAGE), the interstellar medium (ISM) and stars in the LMC. The detection of diffuse ISM with column densities >1.2x10^21 H cm^-2 permits detailed studies of dust processes in the ISM. SAGEs point source sensitivity enables a complete census of newly formed stars with masses >3 solar masses that will determine the current star formation rate in the LMC. SAGEs detection of evolved stars with mass loss rates >1x10^-8 solar masses per year will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by three months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are non-proprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data with a special focus on the N79 and N83 region. The SAGE epoch 1 point source catalog has ~4 million sources. The point source counts are highest for the IRAC 3.6 microns band and decrease dramatically towards longer wavelengths consistent with the fact that stars dominate the point source catalogs and that the dusty objects, e.g. young stellar objects and dusty evolved stars that detected at the longer wavelengths, are rare in comparison. We outline a strategy for identifying foreground MW stars, that may comprise as much as 18% of the source list, and background galaxies, that may comprise ~12% of the source list.
Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxys Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 um epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as ``extreme asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called ``obscured AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen--rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 um MIPS channel that previously unexplored, lower luminosity oxygen-rich AGB stars contribute significantly to the mass loss budget of the LMC (1200 such sources are identified).
We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا