No Arabic abstract
We investigate the stellar populations of Lyman alpha emitters (LAEs) at z=5.7 and 6.6 in a 0.65 deg^2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with Subaru/Suprime-Cam, UKIRT/WFCAM, and Spitzer/IRAC. We produce stacked multiband images at each redshift from 165 (z=5.7) and 91 (z=6.6) IRAC-undetected objects, to derive typical spectral energy distributions (SEDs) of z~6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the HST/WFC3 z-dropout galaxies of similar Muv, with a spectral slope beta ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6um band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10)*10^7 Msun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z=6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical color while keeping the UV color sufficiently blue. We infer that typical LAEs at z~6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyman alpha escape fraction from z=5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons to be f_esc^ion~0.6 at z=5.7 and ~0.9 at z=6.6. We also compare the stellar populations of our LAEs with that of stacked HST/WFC3 z-dropout galaxies.
The escape fraction of ionizing photons from galaxies is a crucial quantity controlling the cosmic ionizing background radiation and the reionization. Various estimates of this parameter can be obtained in the redshift range, z=0--6, either from direct observations or from the observed ionizing background intensities. We compare them homogeneously in terms of the observed flux density ratio of ionizing ($sim900$ AA rest-frame) to non-ionizing ultraviolet ($sim1500$ AA rest-frame) corrected for the intergalactic absorption. The escape fraction is found to increase by an order of magnitude, from a value less than 0.01 at $zla1$ to about 0.1 at $zga4$.
We report results of a unprecedentedly deep, blind search for Ly-alpha emitters (LAEs) at z = 5.7 using IMACS, the Inamori-Magellan Areal Camera & Spectrograph, with the goal of identifying missing sources of reionization that could also be basic building blocks for todays L* galaxies. We describe how improvements in wide field imaging with the Baade telescope, upgrades to IMACS, and the accumulation of ~20 hours of integration per field in excellent seeing led to the detection of single-emission-line sources as faint as F ~ 2 x 10^{-18} ergs s^{-1} cm^{-2}, a sensitivity 5 times deeper than our first search (Martin et al. 2008). A reasonable correction for foreground interlopers implies a steep rise of approximately an order of magnitude in source density for a factor of four drop in flux, from F = 10^{-17.0} ergs s^{-1} cm^{-2} to F = 10^{-17.6} (2.5) x 10^{-18} ergs s^{-1} cm^{-2}. At this flux the putative LAEs have reached a surface density of ~1 per sq arcminute -- a comoving volume density of 4 x 10^{-3} Mpc^{-3}, several times the density of L* galaxies today. Such a population of faint LAEs would account for a significant fraction of the critical flux density required to complete reionization at this epoch, and would be good candidates for building blocks of stellar mass ~10^{8-9} Msun for the young galaxies of this epoch.
Rapid mass assembly, likely from mergers or smooth accretion, has been predicted to play a vital role in star-formation in high-redshift Lyman-alpha (Lya) emitters. Here we predict the major merger, minor merger, and smooth accreting Lya emitter fraction from z~3 to z~7 using a large dark matter simulation, and a simple physical model that is successful in reproducing many observations over this large redshift range. The central tenet of this model, different from many of the earlier models, is that the star-formation in Lya emitters is proportional to the mass accretion rate rather than the total halo mass. We find that at z~3, nearly 35% of the Lya emitters accrete their mass through major (3:1) mergers, and this fraction increases to about 50% at z~7. This imply that the star-formation in a large fraction of high-redshift Lya emitters is driven by mergers. While there is discrepancy between the model predictions and observed merger fractions, some of this difference (~15%) can be attributed to the mass-ratio used to define a merger in the simulation. We predict that future, deeper observations which use a 3:1 definition of major mergers will find >30% major merger fraction of Lya emitters at redshifts >3.
Identifying the mechanisms driving the escape of Lyman Continuum (LyC) photons is crucial to find Lyman Continuum Emitter (LCE) candidates. To understand the physical properties involved in the leakage of LyC photons, we investigate the connection between the HI covering fraction, HI velocity width, the Lyman alpha (LyA) properties and escape of LyC photons in a sample of 22 star-forming galaxies including 13 LCEs. We fit the stellar continua, dust attenuation, and absorption lines between 920 and 1300 A to extract the HI covering fractions and dust attenuation. Additionally, we measure the HI velocity widths of the optically thick Lyman series and derive the LyA equivalent widths (EW), escape fractions (fesc), peak velocities and fluxes at the minimum of the LyA profiles. Overall, we highlight strong correlations between the presence of low HI covering fractions and (1) low LyA peak velocities; (2) more flux at the profile minimum; and (3) larger EW(LyA), fesc(LyA), and fesc(LyC). Hence, low column density channels are crucial ISM ingredients for the leakage of LyC and LyA photons. Additionally, galaxies with narrower HI absorption velocity widths have higher LyA equivalent widths, larger LyA escape fractions, and lower LyA peak velocity separations. This suggests that these galaxies have low HI column density. Finally, we find that dust regulates the amount of LyA and LyC radiation that actually escapes the ISM. Overall, the ISM porosity is one origin of strong LyA emission and enables the escape of ionizing photons in low-z leakers. However, this is not enough to explain the largest fesc(LyC) observed, which indicates that the most extreme LCEs are likely density-bounded along all lines of sight to the observer. Overall, the neutral gas porosity constrains a lower limit to the escape fraction of LyC and LyA photons, providing a key estimator of the leakage of ionizing photons.
We study the far-infrared properties of 498 Lyman Alpha Emitters (LAEs) at z=2.8, 3.1 and 4.5 in the Extended Chandra Deep Field-South, using 250, 350 and 500 micron data from the Herschel Multi-tiered Extragalactic Survey (HerMES) and 870 micron data from the LABOCA ECDFS Submillimeter Survey (LESS). None of the 126, 280 or 92 LAEs at z=2.8, 3.1 and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching $1sigma$ depths of ~0.1 to 0.4 mJy. The LAEs are also undetected at $ge3sigma$ in the stacks, although a $2.5sigma$ signal is observed at 870 micron for the z=2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including a M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star-formation rates of the LAEs. These star-formation rates are then combined with those inferred from the Ly$alpha$ and UV emission to determine lower limits on the LAEs Ly$alpha$ escape fraction ($f_{rm esc}($Ly$alpha$)). For the Sd SED template, the inferred LAEs $f_{rm esc}($Ly$alpha$) are $gtrsim30%$ ($1sigma$) at z=2.8, 3.1 and 4.5, which are all significantly higher than the global $f_{rm esc}($Ly$alpha$) at these redshifts. Thus, if the LAEs $f_{rm esc}($Ly$alpha$) follows the global evolution then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE $f_{rm esc}($Ly$alpha$) of ~10 to 20% ($1sigma$), all of which are slightly higher than the global evolution of $f_{rm esc}($Ly$alpha$) but consistent with it at the 2 to 3$sigma$ level.