No Arabic abstract
Identifying the mechanisms driving the escape of Lyman Continuum (LyC) photons is crucial to find Lyman Continuum Emitter (LCE) candidates. To understand the physical properties involved in the leakage of LyC photons, we investigate the connection between the HI covering fraction, HI velocity width, the Lyman alpha (LyA) properties and escape of LyC photons in a sample of 22 star-forming galaxies including 13 LCEs. We fit the stellar continua, dust attenuation, and absorption lines between 920 and 1300 A to extract the HI covering fractions and dust attenuation. Additionally, we measure the HI velocity widths of the optically thick Lyman series and derive the LyA equivalent widths (EW), escape fractions (fesc), peak velocities and fluxes at the minimum of the LyA profiles. Overall, we highlight strong correlations between the presence of low HI covering fractions and (1) low LyA peak velocities; (2) more flux at the profile minimum; and (3) larger EW(LyA), fesc(LyA), and fesc(LyC). Hence, low column density channels are crucial ISM ingredients for the leakage of LyC and LyA photons. Additionally, galaxies with narrower HI absorption velocity widths have higher LyA equivalent widths, larger LyA escape fractions, and lower LyA peak velocity separations. This suggests that these galaxies have low HI column density. Finally, we find that dust regulates the amount of LyA and LyC radiation that actually escapes the ISM. Overall, the ISM porosity is one origin of strong LyA emission and enables the escape of ionizing photons in low-z leakers. However, this is not enough to explain the largest fesc(LyC) observed, which indicates that the most extreme LCEs are likely density-bounded along all lines of sight to the observer. Overall, the neutral gas porosity constrains a lower limit to the escape fraction of LyC and LyA photons, providing a key estimator of the leakage of ionizing photons.
We build a physical model for high-redshift Lyman Alpha emitters (LAEs) by coupling state of the art cosmological simulations (GADGET-2) with a dust model and a radiative transfer code (pCRASH). We post-process the cosmological simulation with pCRASH using five different values of the escape fraction of hydrogen ionizing photons (f_esc=0.05,0.25,0.5,0.75,0.95) until reionization is complete, i.e. the average neutral hydrogen fraction drops to <X_HI>~10^-4. Then, the only free-parameter left to match model results to the observed Lya and UV luminosity functions of LAEs at z~6.6 is the relative escape of Lyman Alpha (Lya) and continuum photons from the galactic environment (f_alpha/f_c). We find a three-dimensional degeneracy such that the theoretical model can be reconciled with observations for an IGM Lya transmission <T_alpha>_LAE~38-50% (which translates to <X_HI>~0.5-10^-4 for Gaussian emission lines), f_esc~0.05-0.50 and f_alpha/f_c~0.6-1.8.
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy evolution and the cosmic reionization. Here, we investigate the escape of Lya, non-ionizing UV-continuum (l = 1300 - 1600 angstrom in rest frame), and ionizing photons (l < 912 angstrom) from galaxies by combining a cosmological hydrodynamic simulation with three-dimensional multi-wavelength radiative transfer calculations. The galaxies are simulated in a box of 5^3 h^-3 Mpc^3 with high resolutions using the Aquila initial condition which reproduces a Milky Way-like galaxy at redshift z=0. We find that the escape fraction (fesc) of these different photons shows a complex dependence on redshift and galaxy properties: fesc(Lya) and fesc(UV) appear to evolve with redshift, and they show similar, weak correlations with galaxy properties such as mass, star formation, metallicity, and dust content, while fesc(Ion) remains roughly constant at ~ 0.2 from z ~ 0 - 10, and it does not show clear dependence on galaxy properties. fesc(Lya) correlates more strongly with fesc(UV) than with fesc(Ion). In addition, we find a relation between the emergent Lya luminosity and the ionizing photon emissivity of Lyman Alpha Emitters (LAEs). By combining this relation with the observed luminosity functions of LAEs at different redshift, we estimate the contribution from LAEs to the reionization of intergalactic medium (IGM). Our result suggests that ionizing photons from LAEs alone are not sufficient to ionize IGM at z > 6, but they can maintain the ionization of IGM at z ~ 0 - 5.
We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broadband g, r, i, z, and y and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z - NB921 > 1.3. This corresponds to a selection of log L(Ly-alpha) > 43.5 erg/s. We followed up seven candidate LAEs (out of thirteen) with the Keck DEIMOS spectrograph and confirmed five z=6.6 LAEs, one z=6.6 AGN with a broad Ly-alpha line and a strong red continuum, and one low-redshift ([OIII]5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z=6.6 ultraluminous LAEs are systematically different than those of lower luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyman alpha profile of the galaxy---including any blue wings---to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ~ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
We report on the serendipitous discovery of a z=4.0, M1500=-22.20 star-forming galaxy (Ion3) showing copious Lyman continuum (LyC) leakage (~60% escaping), a remarkable multiple peaked Lya emission, and significant Lya radiation directly emerging at the resonance frequency. This is the highest redshift confirmed LyC emitter in which the ionising and Lya radiation possibly share a common ionised cavity (with N_HI<10^17.2 cm^-2). Ion3 is spatially resolved, it shows clear stellar winds signatures like the P-Cygni NV1240 profile, and has blue ultraviolet continuum (beta = -2.5 +/- 0.25, F_lambda~ lambda^beta) with weak low-ionisation interstellar metal lines. Deep VLT/HAWKI Ks and Spitzer/IRAC 3.6um and 4.5um imaging show a clear photometric signature of the Halpha line with equivalent width of 1000A rest-frame emerging over a flat continuum (Ks-4.5um ~ 0). From the SED fitting we derive a stellar mass of 1.5x10^9 Msun, SFR of 140 Msun/yr and age of ~10 Myr, with a low dust extinction, E(B-V)< 0.1, placing the source in the starburst region of the SFR-M^* plane. Ion3 shows similar properties of another LyC emitter previously discovered (z=3.21, Ion2, Vanzella et al. 2016). Ion3 (and Ion2) represents ideal high-redshift reference cases to guide the search for reionising sources at z>6.5 with JWST.
We have recently reported the discovery of five low redshift Lyman continuum (LyC) emitters (LCEs, hereafter) with absolute escape fractions fesc(LyC) ranging from 6 to 13%, higher than previously found, and which more than doubles the number of low redshift LCEs.We use these observations to test theoretical predictions about a link between the characteristics of the Lyman-alpha (Lya) line from galaxies and the escape of ionising photons. We analyse the Lya spectra of eight LCEs of the local Universe observed with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (our five leakers and three galaxies from the litterature), and compare their strengths and shapes to the theoretical criteria and comparison samples of local galaxies: the Lyman Alpha Reference Survey, Lyman Break Analogs, Green Peas, and the high-redshift strong LyC leaker Ion2. Our LCEs are found to be strong Lya emitters, with high equivalent widths, EW(Lya)> 70 {AA}, and large Lya escape fractions, fesc(Lya) > 20%. The Lya profiles are all double-peaked with a small peak separation, in agreement with our theoretical expectations. They also have no underlying absorption at the Lya position. All these characteristics are very different from the Lya properties of typical star-forming galaxies of the local Universe. A subset of the comparison samples (2-3 Green Pea galaxies) share these extreme values, indicating that they could also be leaking. We also find a strong correlation between the star formation rate surface density and the escape fraction of ionising photons, indicating that the compactness of star-forming regions plays a role in shaping low column density paths in the interstellar medium of LCEs. The Lya properties of LCEs are peculiar: Lya can be used as a reliable tracer of LyC escape from galaxies, in complement to other indirect diagnostics proposed in the literature.