Do you want to publish a course? Click here

Spying the World from your Laptop -- Identifying and Profiling Content Providers and Big Downloaders in BitTorrent

194   0   0.0 ( 0 )
 Added by Arnaud Legout
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

This paper presents a set of exploits an adversary can use to continuously spy on most BitTorrent users of the Internet from a single machine and for a long period of time. Using these exploits for a period of 103 days, we collected 148 million IPs downloading 2 billion copies of contents. We identify the IP address of the content providers for 70% of the BitTorrent contents we spied on. We show that a few content providers inject most contents into BitTorrent and that those content providers are located in foreign data centers. We also show that an adversary can compromise the privacy of any peer in BitTorrent and identify the big downloaders that we define as the peers who subscribe to a large number of contents. This infringement on users privacy poses a significant impediment to the legal adoption of BitTorrent.



rate research

Read More

Some BitTorrent users are running BitTorrent on top of Tor to preserve their privacy. In this extended abstract, we discuss three different attacks to reveal the IP address of BitTorrent users on top of Tor. In addition, we exploit the multiplexing of streams from different applications into the same circuit to link non-BitTorrent applications to revealed IP addresses.
139 - Ashwin Rao 2010
Network latency and packet loss are considered to be an important requirement for realistic evaluation of Peer-to-Peer protocols. Dedicated clusters, such as Grid5000, do not provide the variety of network latency and packet loss rates that can be found in the Internet. However, compared to the experiments performed on testbeds such as PlanetLab, the experiments performed on dedicated clusters are reproducible, as the computational resources are not shared. In this paper, we perform experiments to study the impact of network latency and packet loss on the time required to download a file using BitTorrent. In our experiments, we observe a less than 15% increase on the time required to download a file when we increase the round-trip time between any two peers, from 0 ms to 400 ms, and the packet loss rate, from 0% to 5%. Our main conclusion is that the underlying network latency and packet loss have a marginal impact on the time required to download a file using BitTorrent. Hence, dedicated clusters such as Grid5000 can be safely used to perform realistic and reproducible BitTorrent experiments.
The growing size of data center and HPC networks pose unprecedented requirements on the scalability of simulation infrastructure. The ability to simulate such large-scale interconnects on a simple PC would facilitate research efforts. Unfortunately, as we first show in this work, existing shared-memory packet-level simulators do not scale to the sizes of the largest networks considered today. We then illustrate a feasibility analysis and a set of enhancements that enable a simple packet-level htsim simulator to scale to the unprecedented simulation sizes on a single PC. Our code is available online and can be used to design novel schemes in the coming era of omnipresent data centers and HPC clusters.
206 - Ralph V. Chamberlin 2015
Nanothermodynamics extends standard thermodynamics to facilitate finite-size effects on the scale of nanometers. A key ingredient is Hills subdivision potential that accommodates the non-extensive energy of independent small systems, similar to how Gibbs chemical potential accommodates distinct particles. Nanothermodynamics is essential for characterizing the thermal equilibrium distribution of independently relaxing regions inside bulk samples, as is found for the primary response of most materials using various experimental techniques. The subdivision potential ensures strict adherence to the laws of thermodynamics: total energy is conserved by including an instantaneous contribution from the entropy of local configurations, and total entropy remains maximized by coupling to a thermal bath. A unique feature of nanothermodynamics is the completely-open nanocanonical ensemble. Another feature is that particles within each region become statistically indistinguishable, which avoids non-extensive entropy, and mimics quantum-mechanical behavior. Applied to mean-field theory, nanothermodynamics gives a heterogeneous distribution of regions that yields stretched-exponential relaxation and super-Arrhenius activation. Applied to Monte Carlo simulations, there is a nonlinear correction to Boltzmanns factor that improves agreement between the Ising model and measured non-classical critical scaling in magnetic materials. Nanothermodynamics also provides a fundamental mechanism for the 1/f noise found in many materials.
143 - Ashwin Rao 2010
In this paper, we study the impact of network latency on the time required to download a file distributed using BitTorrent. This study is essential to understand if testbeds can be used for experimental evaluation of BitTorrent. We observe that the network latency has a marginal impact on the time required to download a file; hence, BitTorrent experiments can performed on testbeds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا