Do you want to publish a course? Click here

Dielectric black holes induced by a refractive index perturbation and the Hawking effect

157   0   0.0 ( 0 )
 Added by Cacciatori Sergio
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a 4D model for photon production induced by a %superluminal refractive index perturbation in a dielectric medium. We show that, in this model, we can infer the presence of a Hawking type effect. This prediction shows up both in the analogue Hawking framework, which is implemented in the pulse frame and relies on the peculiar properties of the effective geometry in which quantum fields propagate, as well as in the laboratory frame, through standard quantum field theory calculations. Effects of optical dispersion are also taken into account, and are shown to provide a limited energy bandwidth for the emission of Hawking radiation.



rate research

Read More

370 - Ralf Schutzhold 2011
Motivated by recent experimental progress to manipulate the refractive index of dielectric materials by strong laser beams, we study some aspects of the quantum radiation created by such refractive index perturbations.
Static oscillating bounces in Schwarzschild de Sitter spacetime are investigated. The oscillating bounce with many oscillations gives a super-thick bubble wall, for which the total vacuum energy increases while the mass of the black hole decreases due to the conservation of Arnowitt-Deser-Misner (ADM) mass. We show that the transition rate of such an up-tunneling consuming the seed black hole is higher than that of the Hawking-Moss transition. The correspondence of analyses in the static and global coordinates in the Euclidean de Sitter space is also investigated.
The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.
Hawking radiation of uncharged and charged scalars from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using the tunneling method we recover the correct Hawking temperature as well.
In this research, we report the experimental evidence of the directional Fano resonances at the scattering of a plane, linearly polarized electromagnetic wave by a homogeneous dielectric sphere with high refractive index and low losses. We observe a typical asymmetric Fano profile for the intensity scattered in, practically, any given direction, while the overall extinction cross section remains Lorentzian. The phenomenon is originated in the interference of the selectively excited electric dipolar and quadrupolar modes. The selectivity of the excitation is achieved by the proper choice of the frequency of the incident wave. Thanks to the scaling invariance of the Maxwell equations, in these experiments we mimic the scattering of the visible and near IR radiation by a nanoparticle made of common superconductor materials (Si, Ge, GaAs, GaP) by the equivalent scattering of a spherical particle of 18 mm in diameter in the microwave range. The theory developed to explain the experiments extends the conventional Fano approach to the case when both interfering partitions are resonant. The perfect agreement between the experiment and the theory is demonstrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا